1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
#include "rb_lapack.h"
extern VOID dtrevc_(char* side, char* howmny, logical* select, integer* n, doublereal* t, integer* ldt, doublereal* vl, integer* ldvl, doublereal* vr, integer* ldvr, integer* mm, integer* m, doublereal* work, integer* info);
static VALUE
rblapack_dtrevc(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_howmny;
char howmny;
VALUE rblapack_select;
logical *select;
VALUE rblapack_t;
doublereal *t;
VALUE rblapack_vl;
doublereal *vl;
VALUE rblapack_vr;
doublereal *vr;
VALUE rblapack_m;
integer m;
VALUE rblapack_info;
integer info;
VALUE rblapack_select_out__;
logical *select_out__;
VALUE rblapack_vl_out__;
doublereal *vl_out__;
VALUE rblapack_vr_out__;
doublereal *vr_out__;
doublereal *work;
integer n;
integer ldt;
integer ldvl;
integer mm;
integer ldvr;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n m, info, select, vl, vr = NumRu::Lapack.dtrevc( side, howmny, select, t, vl, vr, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, INFO )\n\n* Purpose\n* =======\n*\n* DTREVC computes some or all of the right and/or left eigenvectors of\n* a real upper quasi-triangular matrix T.\n* Matrices of this type are produced by the Schur factorization of\n* a real general matrix: A = Q*T*Q**T, as computed by DHSEQR.\n* \n* The right eigenvector x and the left eigenvector y of T corresponding\n* to an eigenvalue w are defined by:\n* \n* T*x = w*x, (y**H)*T = w*(y**H)\n* \n* where y**H denotes the conjugate transpose of y.\n* The eigenvalues are not input to this routine, but are read directly\n* from the diagonal blocks of T.\n* \n* This routine returns the matrices X and/or Y of right and left\n* eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an\n* input matrix. If Q is the orthogonal factor that reduces a matrix\n* A to Schur form T, then Q*X and Q*Y are the matrices of right and\n* left eigenvectors of A.\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'R': compute right eigenvectors only;\n* = 'L': compute left eigenvectors only;\n* = 'B': compute both right and left eigenvectors.\n*\n* HOWMNY (input) CHARACTER*1\n* = 'A': compute all right and/or left eigenvectors;\n* = 'B': compute all right and/or left eigenvectors,\n* backtransformed by the matrices in VR and/or VL;\n* = 'S': compute selected right and/or left eigenvectors,\n* as indicated by the logical array SELECT.\n*\n* SELECT (input/output) LOGICAL array, dimension (N)\n* If HOWMNY = 'S', SELECT specifies the eigenvectors to be\n* computed.\n* If w(j) is a real eigenvalue, the corresponding real\n* eigenvector is computed if SELECT(j) is .TRUE..\n* If w(j) and w(j+1) are the real and imaginary parts of a\n* complex eigenvalue, the corresponding complex eigenvector is\n* computed if either SELECT(j) or SELECT(j+1) is .TRUE., and\n* on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to\n* .FALSE..\n* Not referenced if HOWMNY = 'A' or 'B'.\n*\n* N (input) INTEGER\n* The order of the matrix T. N >= 0.\n*\n* T (input) DOUBLE PRECISION array, dimension (LDT,N)\n* The upper quasi-triangular matrix T in Schur canonical form.\n*\n* LDT (input) INTEGER\n* The leading dimension of the array T. LDT >= max(1,N).\n*\n* VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)\n* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must\n* contain an N-by-N matrix Q (usually the orthogonal matrix Q\n* of Schur vectors returned by DHSEQR).\n* On exit, if SIDE = 'L' or 'B', VL contains:\n* if HOWMNY = 'A', the matrix Y of left eigenvectors of T;\n* if HOWMNY = 'B', the matrix Q*Y;\n* if HOWMNY = 'S', the left eigenvectors of T specified by\n* SELECT, stored consecutively in the columns\n* of VL, in the same order as their\n* eigenvalues.\n* A complex eigenvector corresponding to a complex eigenvalue\n* is stored in two consecutive columns, the first holding the\n* real part, and the second the imaginary part.\n* Not referenced if SIDE = 'R'.\n*\n* LDVL (input) INTEGER\n* The leading dimension of the array VL. LDVL >= 1, and if\n* SIDE = 'L' or 'B', LDVL >= N.\n*\n* VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)\n* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must\n* contain an N-by-N matrix Q (usually the orthogonal matrix Q\n* of Schur vectors returned by DHSEQR).\n* On exit, if SIDE = 'R' or 'B', VR contains:\n* if HOWMNY = 'A', the matrix X of right eigenvectors of T;\n* if HOWMNY = 'B', the matrix Q*X;\n* if HOWMNY = 'S', the right eigenvectors of T specified by\n* SELECT, stored consecutively in the columns\n* of VR, in the same order as their\n* eigenvalues.\n* A complex eigenvector corresponding to a complex eigenvalue\n* is stored in two consecutive columns, the first holding the\n* real part and the second the imaginary part.\n* Not referenced if SIDE = 'L'.\n*\n* LDVR (input) INTEGER\n* The leading dimension of the array VR. LDVR >= 1, and if\n* SIDE = 'R' or 'B', LDVR >= N.\n*\n* MM (input) INTEGER\n* The number of columns in the arrays VL and/or VR. MM >= M.\n*\n* M (output) INTEGER\n* The number of columns in the arrays VL and/or VR actually\n* used to store the eigenvectors.\n* If HOWMNY = 'A' or 'B', M is set to N.\n* Each selected real eigenvector occupies one column and each\n* selected complex eigenvector occupies two columns.\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* The algorithm used in this program is basically backward (forward)\n* substitution, with scaling to make the the code robust against\n* possible overflow.\n*\n* Each eigenvector is normalized so that the element of largest\n* magnitude has magnitude 1; here the magnitude of a complex number\n* (x,y) is taken to be |x| + |y|.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n m, info, select, vl, vr = NumRu::Lapack.dtrevc( side, howmny, select, t, vl, vr, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_side = argv[0];
rblapack_howmny = argv[1];
rblapack_select = argv[2];
rblapack_t = argv[3];
rblapack_vl = argv[4];
rblapack_vr = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
side = StringValueCStr(rblapack_side)[0];
if (!NA_IsNArray(rblapack_select))
rb_raise(rb_eArgError, "select (3th argument) must be NArray");
if (NA_RANK(rblapack_select) != 1)
rb_raise(rb_eArgError, "rank of select (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_select);
if (NA_TYPE(rblapack_select) != NA_LINT)
rblapack_select = na_change_type(rblapack_select, NA_LINT);
select = NA_PTR_TYPE(rblapack_select, logical*);
if (!NA_IsNArray(rblapack_vl))
rb_raise(rb_eArgError, "vl (5th argument) must be NArray");
if (NA_RANK(rblapack_vl) != 2)
rb_raise(rb_eArgError, "rank of vl (5th argument) must be %d", 2);
ldvl = NA_SHAPE0(rblapack_vl);
mm = NA_SHAPE1(rblapack_vl);
if (NA_TYPE(rblapack_vl) != NA_DFLOAT)
rblapack_vl = na_change_type(rblapack_vl, NA_DFLOAT);
vl = NA_PTR_TYPE(rblapack_vl, doublereal*);
howmny = StringValueCStr(rblapack_howmny)[0];
if (!NA_IsNArray(rblapack_vr))
rb_raise(rb_eArgError, "vr (6th argument) must be NArray");
if (NA_RANK(rblapack_vr) != 2)
rb_raise(rb_eArgError, "rank of vr (6th argument) must be %d", 2);
ldvr = NA_SHAPE0(rblapack_vr);
if (NA_SHAPE1(rblapack_vr) != mm)
rb_raise(rb_eRuntimeError, "shape 1 of vr must be the same as shape 1 of vl");
if (NA_TYPE(rblapack_vr) != NA_DFLOAT)
rblapack_vr = na_change_type(rblapack_vr, NA_DFLOAT);
vr = NA_PTR_TYPE(rblapack_vr, doublereal*);
if (!NA_IsNArray(rblapack_t))
rb_raise(rb_eArgError, "t (4th argument) must be NArray");
if (NA_RANK(rblapack_t) != 2)
rb_raise(rb_eArgError, "rank of t (4th argument) must be %d", 2);
ldt = NA_SHAPE0(rblapack_t);
if (NA_SHAPE1(rblapack_t) != n)
rb_raise(rb_eRuntimeError, "shape 1 of t must be the same as shape 0 of select");
if (NA_TYPE(rblapack_t) != NA_DFLOAT)
rblapack_t = na_change_type(rblapack_t, NA_DFLOAT);
t = NA_PTR_TYPE(rblapack_t, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_select_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
}
select_out__ = NA_PTR_TYPE(rblapack_select_out__, logical*);
MEMCPY(select_out__, select, logical, NA_TOTAL(rblapack_select));
rblapack_select = rblapack_select_out__;
select = select_out__;
{
na_shape_t shape[2];
shape[0] = ldvl;
shape[1] = mm;
rblapack_vl_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
vl_out__ = NA_PTR_TYPE(rblapack_vl_out__, doublereal*);
MEMCPY(vl_out__, vl, doublereal, NA_TOTAL(rblapack_vl));
rblapack_vl = rblapack_vl_out__;
vl = vl_out__;
{
na_shape_t shape[2];
shape[0] = ldvr;
shape[1] = mm;
rblapack_vr_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
}
vr_out__ = NA_PTR_TYPE(rblapack_vr_out__, doublereal*);
MEMCPY(vr_out__, vr, doublereal, NA_TOTAL(rblapack_vr));
rblapack_vr = rblapack_vr_out__;
vr = vr_out__;
work = ALLOC_N(doublereal, (3*n));
dtrevc_(&side, &howmny, select, &n, t, &ldt, vl, &ldvl, vr, &ldvr, &mm, &m, work, &info);
free(work);
rblapack_m = INT2NUM(m);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_m, rblapack_info, rblapack_select, rblapack_vl, rblapack_vr);
}
void
init_lapack_dtrevc(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "dtrevc", rblapack_dtrevc, -1);
}
|