1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#include "rb_lapack.h"
extern VOID sbbcsd_(char* jobu1, char* jobu2, char* jobv1t, char* jobv2t, char* trans, integer* m, integer* p, integer* q, real* theta, real* phi, real* u1, integer* ldu1, real* u2, integer* ldu2, real* v1t, integer* ldv1t, real* v2t, integer* ldv2t, real* b11d, real* b11e, real* b12d, real* b12e, real* b21d, real* b21e, real* b22d, real* b22e, real* work, integer* lwork, integer* info);
static VALUE
rblapack_sbbcsd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobu1;
char jobu1;
VALUE rblapack_jobu2;
char jobu2;
VALUE rblapack_jobv1t;
char jobv1t;
VALUE rblapack_jobv2t;
char jobv2t;
VALUE rblapack_trans;
char trans;
VALUE rblapack_m;
integer m;
VALUE rblapack_theta;
real *theta;
VALUE rblapack_phi;
real *phi;
VALUE rblapack_u1;
real *u1;
VALUE rblapack_u2;
real *u2;
VALUE rblapack_v1t;
real *v1t;
VALUE rblapack_v2t;
real *v2t;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_b11d;
real *b11d;
VALUE rblapack_b11e;
real *b11e;
VALUE rblapack_b12d;
real *b12d;
VALUE rblapack_b12e;
real *b12e;
VALUE rblapack_b21d;
real *b21d;
VALUE rblapack_b21e;
real *b21e;
VALUE rblapack_b22d;
real *b22d;
VALUE rblapack_b22e;
real *b22e;
VALUE rblapack_info;
integer info;
VALUE rblapack_theta_out__;
real *theta_out__;
VALUE rblapack_u1_out__;
real *u1_out__;
VALUE rblapack_u2_out__;
real *u2_out__;
VALUE rblapack_v1t_out__;
real *v1t_out__;
VALUE rblapack_v2t_out__;
real *v2t_out__;
real *work;
integer q;
integer ldu1;
integer p;
integer ldu2;
integer ldv1t;
integer ldv2t;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n b11d, b11e, b12d, b12e, b21d, b21e, b22d, b22e, info, theta, u1, u2, v1t, v2t = NumRu::Lapack.sbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, theta, phi, u1, u2, v1t, v2t, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E, B22D, B22E, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SBBCSD computes the CS decomposition of an orthogonal matrix in\n* bidiagonal-block form,\n*\n*\n* [ B11 | B12 0 0 ]\n* [ 0 | 0 -I 0 ]\n* X = [----------------]\n* [ B21 | B22 0 0 ]\n* [ 0 | 0 0 I ]\n*\n* [ C | -S 0 0 ]\n* [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**T\n* = [---------] [---------------] [---------] .\n* [ | U2 ] [ S | C 0 0 ] [ | V2 ]\n* [ 0 | 0 0 I ]\n*\n* X is M-by-M, its top-left block is P-by-Q, and Q must be no larger\n* than P, M-P, or M-Q. (If Q is not the smallest index, then X must be\n* transposed and/or permuted. This can be done in constant time using\n* the TRANS and SIGNS options. See SORCSD for details.)\n*\n* The bidiagonal matrices B11, B12, B21, and B22 are represented\n* implicitly by angles THETA(1:Q) and PHI(1:Q-1).\n*\n* The orthogonal matrices U1, U2, V1T, and V2T are input/output.\n* The input matrices are pre- or post-multiplied by the appropriate\n* singular vector matrices.\n*\n\n* Arguments\n* =========\n*\n* JOBU1 (input) CHARACTER\n* = 'Y': U1 is updated;\n* otherwise: U1 is not updated.\n*\n* JOBU2 (input) CHARACTER\n* = 'Y': U2 is updated;\n* otherwise: U2 is not updated.\n*\n* JOBV1T (input) CHARACTER\n* = 'Y': V1T is updated;\n* otherwise: V1T is not updated.\n*\n* JOBV2T (input) CHARACTER\n* = 'Y': V2T is updated;\n* otherwise: V2T is not updated.\n*\n* TRANS (input) CHARACTER\n* = 'T': X, U1, U2, V1T, and V2T are stored in row-major\n* order;\n* otherwise: X, U1, U2, V1T, and V2T are stored in column-\n* major order.\n*\n* M (input) INTEGER\n* The number of rows and columns in X, the orthogonal matrix in\n* bidiagonal-block form.\n*\n* P (input) INTEGER\n* The number of rows in the top-left block of X. 0 <= P <= M.\n*\n* Q (input) INTEGER\n* The number of columns in the top-left block of X.\n* 0 <= Q <= MIN(P,M-P,M-Q).\n*\n* THETA (input/output) REAL array, dimension (Q)\n* On entry, the angles THETA(1),...,THETA(Q) that, along with\n* PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block\n* form. On exit, the angles whose cosines and sines define the\n* diagonal blocks in the CS decomposition.\n*\n* PHI (input/workspace) REAL array, dimension (Q-1)\n* The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,\n* THETA(Q), define the matrix in bidiagonal-block form.\n*\n* U1 (input/output) REAL array, dimension (LDU1,P)\n* On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied\n* by the left singular vector matrix common to [ B11 ; 0 ] and\n* [ B12 0 0 ; 0 -I 0 0 ].\n*\n* LDU1 (input) INTEGER\n* The leading dimension of the array U1.\n*\n* U2 (input/output) REAL array, dimension (LDU2,M-P)\n* On entry, an LDU2-by-(M-P) matrix. On exit, U2 is\n* postmultiplied by the left singular vector matrix common to\n* [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].\n*\n* LDU2 (input) INTEGER\n* The leading dimension of the array U2.\n*\n* V1T (input/output) REAL array, dimension (LDV1T,Q)\n* On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied\n* by the transpose of the right singular vector\n* matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].\n*\n* LDV1T (input) INTEGER\n* The leading dimension of the array V1T.\n*\n* V2T (input/output) REAL array, dimenison (LDV2T,M-Q)\n* On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is\n* premultiplied by the transpose of the right\n* singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and\n* [ B22 0 0 ; 0 0 I ].\n*\n* LDV2T (input) INTEGER\n* The leading dimension of the array V2T.\n*\n* B11D (output) REAL array, dimension (Q)\n* When SBBCSD converges, B11D contains the cosines of THETA(1),\n* ..., THETA(Q). If SBBCSD fails to converge, then B11D\n* contains the diagonal of the partially reduced top-left\n* block.\n*\n* B11E (output) REAL array, dimension (Q-1)\n* When SBBCSD converges, B11E contains zeros. If SBBCSD fails\n* to converge, then B11E contains the superdiagonal of the\n* partially reduced top-left block.\n*\n* B12D (output) REAL array, dimension (Q)\n* When SBBCSD converges, B12D contains the negative sines of\n* THETA(1), ..., THETA(Q). If SBBCSD fails to converge, then\n* B12D contains the diagonal of the partially reduced top-right\n* block.\n*\n* B12E (output) REAL array, dimension (Q-1)\n* When SBBCSD converges, B12E contains zeros. If SBBCSD fails\n* to converge, then B12E contains the subdiagonal of the\n* partially reduced top-right block.\n*\n* WORK (workspace) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= MAX(1,8*Q).\n*\n* If LWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal size of the WORK array,\n* returns this value as the first entry of the work array, and\n* no error message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if SBBCSD did not converge, INFO specifies the number\n* of nonzero entries in PHI, and B11D, B11E, etc.,\n* contain the partially reduced matrix.\n*\n* Reference\n* =========\n*\n* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.\n* Algorithms, 50(1):33-65, 2009.\n*\n* Internal Parameters\n* ===================\n*\n* TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8)))\n* TOLMUL controls the convergence criterion of the QR loop.\n* Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they\n* are within TOLMUL*EPS of either bound.\n*\n\n* ===================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n b11d, b11e, b12d, b12e, b21d, b21e, b22d, b22e, info, theta, u1, u2, v1t, v2t = NumRu::Lapack.sbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, theta, phi, u1, u2, v1t, v2t, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 12 && argc != 13)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 12)", argc);
rblapack_jobu1 = argv[0];
rblapack_jobu2 = argv[1];
rblapack_jobv1t = argv[2];
rblapack_jobv2t = argv[3];
rblapack_trans = argv[4];
rblapack_m = argv[5];
rblapack_theta = argv[6];
rblapack_phi = argv[7];
rblapack_u1 = argv[8];
rblapack_u2 = argv[9];
rblapack_v1t = argv[10];
rblapack_v2t = argv[11];
if (argc == 13) {
rblapack_lwork = argv[12];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
jobu1 = StringValueCStr(rblapack_jobu1)[0];
jobv1t = StringValueCStr(rblapack_jobv1t)[0];
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_theta))
rb_raise(rb_eArgError, "theta (7th argument) must be NArray");
if (NA_RANK(rblapack_theta) != 1)
rb_raise(rb_eArgError, "rank of theta (7th argument) must be %d", 1);
q = NA_SHAPE0(rblapack_theta);
if (NA_TYPE(rblapack_theta) != NA_SFLOAT)
rblapack_theta = na_change_type(rblapack_theta, NA_SFLOAT);
theta = NA_PTR_TYPE(rblapack_theta, real*);
if (!NA_IsNArray(rblapack_u1))
rb_raise(rb_eArgError, "u1 (9th argument) must be NArray");
if (NA_RANK(rblapack_u1) != 2)
rb_raise(rb_eArgError, "rank of u1 (9th argument) must be %d", 2);
ldu1 = NA_SHAPE0(rblapack_u1);
p = NA_SHAPE1(rblapack_u1);
if (NA_TYPE(rblapack_u1) != NA_SFLOAT)
rblapack_u1 = na_change_type(rblapack_u1, NA_SFLOAT);
u1 = NA_PTR_TYPE(rblapack_u1, real*);
if (!NA_IsNArray(rblapack_v1t))
rb_raise(rb_eArgError, "v1t (11th argument) must be NArray");
if (NA_RANK(rblapack_v1t) != 2)
rb_raise(rb_eArgError, "rank of v1t (11th argument) must be %d", 2);
ldv1t = NA_SHAPE0(rblapack_v1t);
if (NA_SHAPE1(rblapack_v1t) != q)
rb_raise(rb_eRuntimeError, "shape 1 of v1t must be the same as shape 0 of theta");
if (NA_TYPE(rblapack_v1t) != NA_SFLOAT)
rblapack_v1t = na_change_type(rblapack_v1t, NA_SFLOAT);
v1t = NA_PTR_TYPE(rblapack_v1t, real*);
if (rblapack_lwork == Qnil)
lwork = 8*q;
else {
lwork = NUM2INT(rblapack_lwork);
}
jobu2 = StringValueCStr(rblapack_jobu2)[0];
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_u2))
rb_raise(rb_eArgError, "u2 (10th argument) must be NArray");
if (NA_RANK(rblapack_u2) != 2)
rb_raise(rb_eArgError, "rank of u2 (10th argument) must be %d", 2);
ldu2 = NA_SHAPE0(rblapack_u2);
if (NA_SHAPE1(rblapack_u2) != (m-p))
rb_raise(rb_eRuntimeError, "shape 1 of u2 must be %d", m-p);
if (NA_TYPE(rblapack_u2) != NA_SFLOAT)
rblapack_u2 = na_change_type(rblapack_u2, NA_SFLOAT);
u2 = NA_PTR_TYPE(rblapack_u2, real*);
jobv2t = StringValueCStr(rblapack_jobv2t)[0];
if (!NA_IsNArray(rblapack_v2t))
rb_raise(rb_eArgError, "v2t (12th argument) must be NArray");
if (NA_RANK(rblapack_v2t) != 2)
rb_raise(rb_eArgError, "rank of v2t (12th argument) must be %d", 2);
ldv2t = NA_SHAPE0(rblapack_v2t);
if (NA_SHAPE1(rblapack_v2t) != (m-q))
rb_raise(rb_eRuntimeError, "shape 1 of v2t must be %d", m-q);
if (NA_TYPE(rblapack_v2t) != NA_SFLOAT)
rblapack_v2t = na_change_type(rblapack_v2t, NA_SFLOAT);
v2t = NA_PTR_TYPE(rblapack_v2t, real*);
if (!NA_IsNArray(rblapack_phi))
rb_raise(rb_eArgError, "phi (8th argument) must be NArray");
if (NA_RANK(rblapack_phi) != 1)
rb_raise(rb_eArgError, "rank of phi (8th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_phi) != (q-1))
rb_raise(rb_eRuntimeError, "shape 0 of phi must be %d", q-1);
if (NA_TYPE(rblapack_phi) != NA_SFLOAT)
rblapack_phi = na_change_type(rblapack_phi, NA_SFLOAT);
phi = NA_PTR_TYPE(rblapack_phi, real*);
{
na_shape_t shape[1];
shape[0] = q;
rblapack_b11d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b11d = NA_PTR_TYPE(rblapack_b11d, real*);
{
na_shape_t shape[1];
shape[0] = q-1;
rblapack_b11e = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b11e = NA_PTR_TYPE(rblapack_b11e, real*);
{
na_shape_t shape[1];
shape[0] = q;
rblapack_b12d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b12d = NA_PTR_TYPE(rblapack_b12d, real*);
{
na_shape_t shape[1];
shape[0] = q-1;
rblapack_b12e = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b12e = NA_PTR_TYPE(rblapack_b12e, real*);
{
na_shape_t shape[1];
shape[0] = q;
rblapack_b21d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b21d = NA_PTR_TYPE(rblapack_b21d, real*);
{
na_shape_t shape[1];
shape[0] = q-1;
rblapack_b21e = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b21e = NA_PTR_TYPE(rblapack_b21e, real*);
{
na_shape_t shape[1];
shape[0] = q;
rblapack_b22d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b22d = NA_PTR_TYPE(rblapack_b22d, real*);
{
na_shape_t shape[1];
shape[0] = q-1;
rblapack_b22e = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
b22e = NA_PTR_TYPE(rblapack_b22e, real*);
{
na_shape_t shape[1];
shape[0] = q;
rblapack_theta_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
theta_out__ = NA_PTR_TYPE(rblapack_theta_out__, real*);
MEMCPY(theta_out__, theta, real, NA_TOTAL(rblapack_theta));
rblapack_theta = rblapack_theta_out__;
theta = theta_out__;
{
na_shape_t shape[2];
shape[0] = ldu1;
shape[1] = p;
rblapack_u1_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
u1_out__ = NA_PTR_TYPE(rblapack_u1_out__, real*);
MEMCPY(u1_out__, u1, real, NA_TOTAL(rblapack_u1));
rblapack_u1 = rblapack_u1_out__;
u1 = u1_out__;
{
na_shape_t shape[2];
shape[0] = ldu2;
shape[1] = m-p;
rblapack_u2_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
u2_out__ = NA_PTR_TYPE(rblapack_u2_out__, real*);
MEMCPY(u2_out__, u2, real, NA_TOTAL(rblapack_u2));
rblapack_u2 = rblapack_u2_out__;
u2 = u2_out__;
{
na_shape_t shape[2];
shape[0] = ldv1t;
shape[1] = q;
rblapack_v1t_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
v1t_out__ = NA_PTR_TYPE(rblapack_v1t_out__, real*);
MEMCPY(v1t_out__, v1t, real, NA_TOTAL(rblapack_v1t));
rblapack_v1t = rblapack_v1t_out__;
v1t = v1t_out__;
{
na_shape_t shape[2];
shape[0] = ldv2t;
shape[1] = m-q;
rblapack_v2t_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
v2t_out__ = NA_PTR_TYPE(rblapack_v2t_out__, real*);
MEMCPY(v2t_out__, v2t, real, NA_TOTAL(rblapack_v2t));
rblapack_v2t = rblapack_v2t_out__;
v2t = v2t_out__;
work = ALLOC_N(real, (MAX(1,lwork)));
sbbcsd_(&jobu1, &jobu2, &jobv1t, &jobv2t, &trans, &m, &p, &q, theta, phi, u1, &ldu1, u2, &ldu2, v1t, &ldv1t, v2t, &ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b22d, b22e, work, &lwork, &info);
free(work);
rblapack_info = INT2NUM(info);
return rb_ary_new3(14, rblapack_b11d, rblapack_b11e, rblapack_b12d, rblapack_b12e, rblapack_b21d, rblapack_b21e, rblapack_b22d, rblapack_b22e, rblapack_info, rblapack_theta, rblapack_u1, rblapack_u2, rblapack_v1t, rblapack_v2t);
}
void
init_lapack_sbbcsd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "sbbcsd", rblapack_sbbcsd, -1);
}
|