1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#include "rb_lapack.h"
static logical
rblapack_select(real *arg0, real *arg1){
VALUE rblapack_arg0, rblapack_arg1;
VALUE rblapack_ret;
logical ret;
rblapack_arg0 = rb_float_new((double)(*arg0));
rblapack_arg1 = rb_float_new((double)(*arg1));
rblapack_ret = rb_yield_values(2, rblapack_arg0, rblapack_arg1);
ret = (rblapack_ret == Qtrue);
return ret;
}
extern VOID sgees_(char* jobvs, char* sort, L_fp select, integer* n, real* a, integer* lda, integer* sdim, real* wr, real* wi, real* vs, integer* ldvs, real* work, integer* lwork, logical* bwork, integer* info);
static VALUE
rblapack_sgees(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobvs;
char jobvs;
VALUE rblapack_sort;
char sort;
VALUE rblapack_a;
real *a;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_sdim;
integer sdim;
VALUE rblapack_wr;
real *wr;
VALUE rblapack_wi;
real *wi;
VALUE rblapack_vs;
real *vs;
VALUE rblapack_work;
real *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
logical *bwork;
integer lda;
integer n;
integer ldvs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n sdim, wr, wi, vs, work, info, a = NumRu::Lapack.sgees( jobvs, sort, a, [:lwork => lwork, :usage => usage, :help => help]){|a,b| ... }\n\n\nFORTRAN MANUAL\n SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI, VS, LDVS, WORK, LWORK, BWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGEES computes for an N-by-N real nonsymmetric matrix A, the\n* eigenvalues, the real Schur form T, and, optionally, the matrix of\n* Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).\n*\n* Optionally, it also orders the eigenvalues on the diagonal of the\n* real Schur form so that selected eigenvalues are at the top left.\n* The leading columns of Z then form an orthonormal basis for the\n* invariant subspace corresponding to the selected eigenvalues.\n*\n* A matrix is in real Schur form if it is upper quasi-triangular with\n* 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the\n* form\n* [ a b ]\n* [ c a ]\n*\n* where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).\n*\n\n* Arguments\n* =========\n*\n* JOBVS (input) CHARACTER*1\n* = 'N': Schur vectors are not computed;\n* = 'V': Schur vectors are computed.\n*\n* SORT (input) CHARACTER*1\n* Specifies whether or not to order the eigenvalues on the\n* diagonal of the Schur form.\n* = 'N': Eigenvalues are not ordered;\n* = 'S': Eigenvalues are ordered (see SELECT).\n*\n* SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments\n* SELECT must be declared EXTERNAL in the calling subroutine.\n* If SORT = 'S', SELECT is used to select eigenvalues to sort\n* to the top left of the Schur form.\n* If SORT = 'N', SELECT is not referenced.\n* An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if\n* SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex\n* conjugate pair of eigenvalues is selected, then both complex\n* eigenvalues are selected.\n* Note that a selected complex eigenvalue may no longer\n* satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since\n* ordering may change the value of complex eigenvalues\n* (especially if the eigenvalue is ill-conditioned); in this\n* case INFO is set to N+2 (see INFO below).\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the N-by-N matrix A.\n* On exit, A has been overwritten by its real Schur form T.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* SDIM (output) INTEGER\n* If SORT = 'N', SDIM = 0.\n* If SORT = 'S', SDIM = number of eigenvalues (after sorting)\n* for which SELECT is true. (Complex conjugate\n* pairs for which SELECT is true for either\n* eigenvalue count as 2.)\n*\n* WR (output) REAL array, dimension (N)\n* WI (output) REAL array, dimension (N)\n* WR and WI contain the real and imaginary parts,\n* respectively, of the computed eigenvalues in the same order\n* that they appear on the diagonal of the output Schur form T.\n* Complex conjugate pairs of eigenvalues will appear\n* consecutively with the eigenvalue having the positive\n* imaginary part first.\n*\n* VS (output) REAL array, dimension (LDVS,N)\n* If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur\n* vectors.\n* If JOBVS = 'N', VS is not referenced.\n*\n* LDVS (input) INTEGER\n* The leading dimension of the array VS. LDVS >= 1; if\n* JOBVS = 'V', LDVS >= N.\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) contains the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,3*N).\n* For good performance, LWORK must generally be larger.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* BWORK (workspace) LOGICAL array, dimension (N)\n* Not referenced if SORT = 'N'.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = i, and i is\n* <= N: the QR algorithm failed to compute all the\n* eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI\n* contain those eigenvalues which have converged; if\n* JOBVS = 'V', VS contains the matrix which reduces A\n* to its partially converged Schur form.\n* = N+1: the eigenvalues could not be reordered because some\n* eigenvalues were too close to separate (the problem\n* is very ill-conditioned);\n* = N+2: after reordering, roundoff changed values of some\n* complex eigenvalues so that leading eigenvalues in\n* the Schur form no longer satisfy SELECT=.TRUE. This\n* could also be caused by underflow due to scaling.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n sdim, wr, wi, vs, work, info, a = NumRu::Lapack.sgees( jobvs, sort, a, [:lwork => lwork, :usage => usage, :help => help]){|a,b| ... }\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 4)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_jobvs = argv[0];
rblapack_sort = argv[1];
rblapack_a = argv[2];
if (argc == 4) {
rblapack_lwork = argv[3];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
jobvs = StringValueCStr(rblapack_jobvs)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
ldvs = lsame_(&jobvs,"V") ? n : 1;
sort = StringValueCStr(rblapack_sort)[0];
if (rblapack_lwork == Qnil)
lwork = 3*n;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_wr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
wr = NA_PTR_TYPE(rblapack_wr, real*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_wi = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
wi = NA_PTR_TYPE(rblapack_wi, real*);
{
na_shape_t shape[2];
shape[0] = ldvs;
shape[1] = n;
rblapack_vs = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
vs = NA_PTR_TYPE(rblapack_vs, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, real*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
bwork = ALLOC_N(logical, (lsame_(&sort,"N") ? 0 : n));
sgees_(&jobvs, &sort, rblapack_select, &n, a, &lda, &sdim, wr, wi, vs, &ldvs, work, &lwork, bwork, &info);
free(bwork);
rblapack_sdim = INT2NUM(sdim);
rblapack_info = INT2NUM(info);
return rb_ary_new3(7, rblapack_sdim, rblapack_wr, rblapack_wi, rblapack_vs, rblapack_work, rblapack_info, rblapack_a);
}
void
init_lapack_sgees(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "sgees", rblapack_sgees, -1);
}
|