1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#include "rb_lapack.h"
static logical
rblapack_select(real *arg0, real *arg1){
VALUE rblapack_arg0, rblapack_arg1;
VALUE rblapack_ret;
logical ret;
rblapack_arg0 = rb_float_new((double)(*arg0));
rblapack_arg1 = rb_float_new((double)(*arg1));
rblapack_ret = rb_yield_values(2, rblapack_arg0, rblapack_arg1);
ret = (rblapack_ret == Qtrue);
return ret;
}
extern VOID sgeesx_(char* jobvs, char* sort, L_fp select, char* sense, integer* n, real* a, integer* lda, integer* sdim, real* wr, real* wi, real* vs, integer* ldvs, real* rconde, real* rcondv, real* work, integer* lwork, integer* iwork, integer* liwork, logical* bwork, integer* info);
static VALUE
rblapack_sgeesx(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobvs;
char jobvs;
VALUE rblapack_sort;
char sort;
VALUE rblapack_sense;
char sense;
VALUE rblapack_a;
real *a;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_sdim;
integer sdim;
VALUE rblapack_wr;
real *wr;
VALUE rblapack_wi;
real *wi;
VALUE rblapack_vs;
real *vs;
VALUE rblapack_rconde;
real rconde;
VALUE rblapack_rcondv;
real rcondv;
VALUE rblapack_work;
real *work;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
logical *bwork;
integer lda;
integer n;
integer ldvs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n sdim, wr, wi, vs, rconde, rcondv, work, iwork, info, a = NumRu::Lapack.sgeesx( jobvs, sort, sense, a, liwork, [:lwork => lwork, :usage => usage, :help => help]){|a,b| ... }\n\n\nFORTRAN MANUAL\n SUBROUTINE SGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, IWORK, LIWORK, BWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGEESX computes for an N-by-N real nonsymmetric matrix A, the\n* eigenvalues, the real Schur form T, and, optionally, the matrix of\n* Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).\n*\n* Optionally, it also orders the eigenvalues on the diagonal of the\n* real Schur form so that selected eigenvalues are at the top left;\n* computes a reciprocal condition number for the average of the\n* selected eigenvalues (RCONDE); and computes a reciprocal condition\n* number for the right invariant subspace corresponding to the\n* selected eigenvalues (RCONDV). The leading columns of Z form an\n* orthonormal basis for this invariant subspace.\n*\n* For further explanation of the reciprocal condition numbers RCONDE\n* and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where\n* these quantities are called s and sep respectively).\n*\n* A real matrix is in real Schur form if it is upper quasi-triangular\n* with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in\n* the form\n* [ a b ]\n* [ c a ]\n*\n* where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).\n*\n\n* Arguments\n* =========\n*\n* JOBVS (input) CHARACTER*1\n* = 'N': Schur vectors are not computed;\n* = 'V': Schur vectors are computed.\n*\n* SORT (input) CHARACTER*1\n* Specifies whether or not to order the eigenvalues on the\n* diagonal of the Schur form.\n* = 'N': Eigenvalues are not ordered;\n* = 'S': Eigenvalues are ordered (see SELECT).\n*\n* SELECT (external procedure) LOGICAL FUNCTION of two REAL arguments\n* SELECT must be declared EXTERNAL in the calling subroutine.\n* If SORT = 'S', SELECT is used to select eigenvalues to sort\n* to the top left of the Schur form.\n* If SORT = 'N', SELECT is not referenced.\n* An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if\n* SELECT(WR(j),WI(j)) is true; i.e., if either one of a\n* complex conjugate pair of eigenvalues is selected, then both\n* are. Note that a selected complex eigenvalue may no longer\n* satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since\n* ordering may change the value of complex eigenvalues\n* (especially if the eigenvalue is ill-conditioned); in this\n* case INFO may be set to N+3 (see INFO below).\n*\n* SENSE (input) CHARACTER*1\n* Determines which reciprocal condition numbers are computed.\n* = 'N': None are computed;\n* = 'E': Computed for average of selected eigenvalues only;\n* = 'V': Computed for selected right invariant subspace only;\n* = 'B': Computed for both.\n* If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA, N)\n* On entry, the N-by-N matrix A.\n* On exit, A is overwritten by its real Schur form T.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* SDIM (output) INTEGER\n* If SORT = 'N', SDIM = 0.\n* If SORT = 'S', SDIM = number of eigenvalues (after sorting)\n* for which SELECT is true. (Complex conjugate\n* pairs for which SELECT is true for either\n* eigenvalue count as 2.)\n*\n* WR (output) REAL array, dimension (N)\n* WI (output) REAL array, dimension (N)\n* WR and WI contain the real and imaginary parts, respectively,\n* of the computed eigenvalues, in the same order that they\n* appear on the diagonal of the output Schur form T. Complex\n* conjugate pairs of eigenvalues appear consecutively with the\n* eigenvalue having the positive imaginary part first.\n*\n* VS (output) REAL array, dimension (LDVS,N)\n* If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur\n* vectors.\n* If JOBVS = 'N', VS is not referenced.\n*\n* LDVS (input) INTEGER\n* The leading dimension of the array VS. LDVS >= 1, and if\n* JOBVS = 'V', LDVS >= N.\n*\n* RCONDE (output) REAL\n* If SENSE = 'E' or 'B', RCONDE contains the reciprocal\n* condition number for the average of the selected eigenvalues.\n* Not referenced if SENSE = 'N' or 'V'.\n*\n* RCONDV (output) REAL\n* If SENSE = 'V' or 'B', RCONDV contains the reciprocal\n* condition number for the selected right invariant subspace.\n* Not referenced if SENSE = 'N' or 'E'.\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,3*N).\n* Also, if SENSE = 'E' or 'V' or 'B',\n* LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of\n* selected eigenvalues computed by this routine. Note that\n* N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only\n* returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or\n* 'B' this may not be large enough.\n* For good performance, LWORK must generally be larger.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates upper bounds on the optimal sizes of the\n* arrays WORK and IWORK, returns these values as the first\n* entries of the WORK and IWORK arrays, and no error messages\n* related to LWORK or LIWORK are issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of the array IWORK.\n* LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).\n* Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is\n* only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this\n* may not be large enough.\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates upper bounds on the optimal sizes of\n* the arrays WORK and IWORK, returns these values as the first\n* entries of the WORK and IWORK arrays, and no error messages\n* related to LWORK or LIWORK are issued by XERBLA.\n*\n* BWORK (workspace) LOGICAL array, dimension (N)\n* Not referenced if SORT = 'N'.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = i, and i is\n* <= N: the QR algorithm failed to compute all the\n* eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI\n* contain those eigenvalues which have converged; if\n* JOBVS = 'V', VS contains the transformation which\n* reduces A to its partially converged Schur form.\n* = N+1: the eigenvalues could not be reordered because some\n* eigenvalues were too close to separate (the problem\n* is very ill-conditioned);\n* = N+2: after reordering, roundoff changed values of some\n* complex eigenvalues so that leading eigenvalues in\n* the Schur form no longer satisfy SELECT=.TRUE. This\n* could also be caused by underflow due to scaling.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n sdim, wr, wi, vs, rconde, rcondv, work, iwork, info, a = NumRu::Lapack.sgeesx( jobvs, sort, sense, a, liwork, [:lwork => lwork, :usage => usage, :help => help]){|a,b| ... }\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_jobvs = argv[0];
rblapack_sort = argv[1];
rblapack_sense = argv[2];
rblapack_a = argv[3];
rblapack_liwork = argv[4];
if (argc == 6) {
rblapack_lwork = argv[5];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
jobvs = StringValueCStr(rblapack_jobvs)[0];
sense = StringValueCStr(rblapack_sense)[0];
liwork = NUM2INT(rblapack_liwork);
sort = StringValueCStr(rblapack_sort)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
ldvs = lsame_(&jobvs,"V") ? n : 1;
if (rblapack_lwork == Qnil)
lwork = (lsame_(&sense,"E")||lsame_(&sense,"V")||lsame_(&sense,"B")) ? n+n*n/2 : 3*n;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_wr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
wr = NA_PTR_TYPE(rblapack_wr, real*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_wi = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
wi = NA_PTR_TYPE(rblapack_wi, real*);
{
na_shape_t shape[2];
shape[0] = ldvs;
shape[1] = n;
rblapack_vs = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
vs = NA_PTR_TYPE(rblapack_vs, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
bwork = ALLOC_N(logical, (lsame_(&sort,"N") ? 0 : n));
sgeesx_(&jobvs, &sort, rblapack_select, &sense, &n, a, &lda, &sdim, wr, wi, vs, &ldvs, &rconde, &rcondv, work, &lwork, iwork, &liwork, bwork, &info);
free(bwork);
rblapack_sdim = INT2NUM(sdim);
rblapack_rconde = rb_float_new((double)rconde);
rblapack_rcondv = rb_float_new((double)rcondv);
rblapack_info = INT2NUM(info);
return rb_ary_new3(10, rblapack_sdim, rblapack_wr, rblapack_wi, rblapack_vs, rblapack_rconde, rblapack_rcondv, rblapack_work, rblapack_iwork, rblapack_info, rblapack_a);
}
void
init_lapack_sgeesx(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "sgeesx", rblapack_sgeesx, -1);
}
|