1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#include "rb_lapack.h"
extern VOID sggrqf_(integer* m, integer* p, integer* n, real* a, integer* lda, real* taua, real* b, integer* ldb, real* taub, real* work, integer* lwork, integer* info);
static VALUE
rblapack_sggrqf(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_p;
integer p;
VALUE rblapack_a;
real *a;
VALUE rblapack_b;
real *b;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_taua;
real *taua;
VALUE rblapack_taub;
real *taub;
VALUE rblapack_work;
real *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
VALUE rblapack_b_out__;
real *b_out__;
integer lda;
integer n;
integer ldb;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n taua, taub, work, info, a, b = NumRu::Lapack.sggrqf( m, p, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGGRQF computes a generalized RQ factorization of an M-by-N matrix A\n* and a P-by-N matrix B:\n*\n* A = R*Q, B = Z*T*Q,\n*\n* where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal\n* matrix, and R and T assume one of the forms:\n*\n* if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,\n* N-M M ( R21 ) N\n* N\n*\n* where R12 or R21 is upper triangular, and\n*\n* if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,\n* ( 0 ) P-N P N-P\n* N\n*\n* where T11 is upper triangular.\n*\n* In particular, if B is square and nonsingular, the GRQ factorization\n* of A and B implicitly gives the RQ factorization of A*inv(B):\n*\n* A*inv(B) = (R*inv(T))*Z'\n*\n* where inv(B) denotes the inverse of the matrix B, and Z' denotes the\n* transpose of the matrix Z.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* P (input) INTEGER\n* The number of rows of the matrix B. P >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrices A and B. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, if M <= N, the upper triangle of the subarray\n* A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;\n* if M > N, the elements on and above the (M-N)-th subdiagonal\n* contain the M-by-N upper trapezoidal matrix R; the remaining\n* elements, with the array TAUA, represent the orthogonal\n* matrix Q as a product of elementary reflectors (see Further\n* Details).\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* TAUA (output) REAL array, dimension (min(M,N))\n* The scalar factors of the elementary reflectors which\n* represent the orthogonal matrix Q (see Further Details).\n*\n* B (input/output) REAL array, dimension (LDB,N)\n* On entry, the P-by-N matrix B.\n* On exit, the elements on and above the diagonal of the array\n* contain the min(P,N)-by-N upper trapezoidal matrix T (T is\n* upper triangular if P >= N); the elements below the diagonal,\n* with the array TAUB, represent the orthogonal matrix Z as a\n* product of elementary reflectors (see Further Details).\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,P).\n*\n* TAUB (output) REAL array, dimension (min(P,N))\n* The scalar factors of the elementary reflectors which\n* represent the orthogonal matrix Z (see Further Details).\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,N,M,P).\n* For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),\n* where NB1 is the optimal blocksize for the RQ factorization\n* of an M-by-N matrix, NB2 is the optimal blocksize for the\n* QR factorization of a P-by-N matrix, and NB3 is the optimal\n* blocksize for a call of SORMRQ.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INF0= -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of elementary reflectors\n*\n* Q = H(1) H(2) . . . H(k), where k = min(m,n).\n*\n* Each H(i) has the form\n*\n* H(i) = I - taua * v * v'\n*\n* where taua is a real scalar, and v is a real vector with\n* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in\n* A(m-k+i,1:n-k+i-1), and taua in TAUA(i).\n* To form Q explicitly, use LAPACK subroutine SORGRQ.\n* To use Q to update another matrix, use LAPACK subroutine SORMRQ.\n*\n* The matrix Z is represented as a product of elementary reflectors\n*\n* Z = H(1) H(2) . . . H(k), where k = min(p,n).\n*\n* Each H(i) has the form\n*\n* H(i) = I - taub * v * v'\n*\n* where taub is a real scalar, and v is a real vector with\n* v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),\n* and taub in TAUB(i).\n* To form Z explicitly, use LAPACK subroutine SORGQR.\n* To use Z to update another matrix, use LAPACK subroutine SORMQR.\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL LQUERY\n INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3\n* ..\n* .. External Subroutines ..\n EXTERNAL SGEQRF, SGERQF, SORMRQ, XERBLA\n* ..\n* .. External Functions ..\n INTEGER ILAENV \n EXTERNAL ILAENV \n* ..\n* .. Intrinsic Functions ..\n INTRINSIC INT, MAX, MIN\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n taua, taub, work, info, a, b = NumRu::Lapack.sggrqf( m, p, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_m = argv[0];
rblapack_p = argv[1];
rblapack_a = argv[2];
rblapack_b = argv[3];
if (argc == 5) {
rblapack_lwork = argv[4];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
p = NUM2INT(rblapack_p);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (4th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
if (NA_SHAPE1(rblapack_b) != n)
rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
if (NA_TYPE(rblapack_b) != NA_SFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
b = NA_PTR_TYPE(rblapack_b, real*);
if (rblapack_lwork == Qnil)
lwork = MAX(MAX(n,m),p);
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = MIN(m,n);
rblapack_taua = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
taua = NA_PTR_TYPE(rblapack_taua, real*);
{
na_shape_t shape[1];
shape[0] = MIN(p,n);
rblapack_taub = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
taub = NA_PTR_TYPE(rblapack_taub, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, real*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = n;
rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
sggrqf_(&m, &p, &n, a, &lda, taua, b, &ldb, taub, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(6, rblapack_taua, rblapack_taub, rblapack_work, rblapack_info, rblapack_a, rblapack_b);
}
void
init_lapack_sggrqf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "sggrqf", rblapack_sggrqf, -1);
}
|