1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include "rb_lapack.h"
extern VOID sggsvp_(char* jobu, char* jobv, char* jobq, integer* m, integer* p, integer* n, real* a, integer* lda, real* b, integer* ldb, real* tola, real* tolb, integer* k, integer* l, real* u, integer* ldu, real* v, integer* ldv, real* q, integer* ldq, integer* iwork, real* tau, real* work, integer* info);
static VALUE
rblapack_sggsvp(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobu;
char jobu;
VALUE rblapack_jobv;
char jobv;
VALUE rblapack_jobq;
char jobq;
VALUE rblapack_a;
real *a;
VALUE rblapack_b;
real *b;
VALUE rblapack_tola;
real tola;
VALUE rblapack_tolb;
real tolb;
VALUE rblapack_k;
integer k;
VALUE rblapack_l;
integer l;
VALUE rblapack_u;
real *u;
VALUE rblapack_v;
real *v;
VALUE rblapack_q;
real *q;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
VALUE rblapack_b_out__;
real *b_out__;
integer *iwork;
real *tau;
real *work;
integer lda;
integer n;
integer ldb;
integer ldu;
integer m;
integer ldv;
integer p;
integer ldq;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n k, l, u, v, q, info, a, b = NumRu::Lapack.sggsvp( jobu, jobv, jobq, a, b, tola, tolb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO )\n\n* Purpose\n* =======\n*\n* SGGSVP computes orthogonal matrices U, V and Q such that\n*\n* N-K-L K L\n* U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;\n* L ( 0 0 A23 )\n* M-K-L ( 0 0 0 )\n*\n* N-K-L K L\n* = K ( 0 A12 A13 ) if M-K-L < 0;\n* M-K ( 0 0 A23 )\n*\n* N-K-L K L\n* V'*B*Q = L ( 0 0 B13 )\n* P-L ( 0 0 0 )\n*\n* where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular\n* upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,\n* otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective\n* numerical rank of the (M+P)-by-N matrix (A',B')'. Z' denotes the\n* transpose of Z.\n*\n* This decomposition is the preprocessing step for computing the\n* Generalized Singular Value Decomposition (GSVD), see subroutine\n* SGGSVD.\n*\n\n* Arguments\n* =========\n*\n* JOBU (input) CHARACTER*1\n* = 'U': Orthogonal matrix U is computed;\n* = 'N': U is not computed.\n*\n* JOBV (input) CHARACTER*1\n* = 'V': Orthogonal matrix V is computed;\n* = 'N': V is not computed.\n*\n* JOBQ (input) CHARACTER*1\n* = 'Q': Orthogonal matrix Q is computed;\n* = 'N': Q is not computed.\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* P (input) INTEGER\n* The number of rows of the matrix B. P >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrices A and B. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, A contains the triangular (or trapezoidal) matrix\n* described in the Purpose section.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* B (input/output) REAL array, dimension (LDB,N)\n* On entry, the P-by-N matrix B.\n* On exit, B contains the triangular matrix described in\n* the Purpose section.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,P).\n*\n* TOLA (input) REAL\n* TOLB (input) REAL\n* TOLA and TOLB are the thresholds to determine the effective\n* numerical rank of matrix B and a subblock of A. Generally,\n* they are set to\n* TOLA = MAX(M,N)*norm(A)*MACHEPS,\n* TOLB = MAX(P,N)*norm(B)*MACHEPS.\n* The size of TOLA and TOLB may affect the size of backward\n* errors of the decomposition.\n*\n* K (output) INTEGER\n* L (output) INTEGER\n* On exit, K and L specify the dimension of the subblocks\n* described in Purpose.\n* K + L = effective numerical rank of (A',B')'.\n*\n* U (output) REAL array, dimension (LDU,M)\n* If JOBU = 'U', U contains the orthogonal matrix U.\n* If JOBU = 'N', U is not referenced.\n*\n* LDU (input) INTEGER\n* The leading dimension of the array U. LDU >= max(1,M) if\n* JOBU = 'U'; LDU >= 1 otherwise.\n*\n* V (output) REAL array, dimension (LDV,P)\n* If JOBV = 'V', V contains the orthogonal matrix V.\n* If JOBV = 'N', V is not referenced.\n*\n* LDV (input) INTEGER\n* The leading dimension of the array V. LDV >= max(1,P) if\n* JOBV = 'V'; LDV >= 1 otherwise.\n*\n* Q (output) REAL array, dimension (LDQ,N)\n* If JOBQ = 'Q', Q contains the orthogonal matrix Q.\n* If JOBQ = 'N', Q is not referenced.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= max(1,N) if\n* JOBQ = 'Q'; LDQ >= 1 otherwise.\n*\n* IWORK (workspace) INTEGER array, dimension (N)\n*\n* TAU (workspace) REAL array, dimension (N)\n*\n* WORK (workspace) REAL array, dimension (max(3*N,M,P))\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n*\n\n* Further Details\n* ===============\n*\n* The subroutine uses LAPACK subroutine SGEQPF for the QR factorization\n* with column pivoting to detect the effective numerical rank of the\n* a matrix. It may be replaced by a better rank determination strategy.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n k, l, u, v, q, info, a, b = NumRu::Lapack.sggsvp( jobu, jobv, jobq, a, b, tola, tolb, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 7 && argc != 7)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
rblapack_jobu = argv[0];
rblapack_jobv = argv[1];
rblapack_jobq = argv[2];
rblapack_a = argv[3];
rblapack_b = argv[4];
rblapack_tola = argv[5];
rblapack_tolb = argv[6];
if (argc == 7) {
} else if (rblapack_options != Qnil) {
} else {
}
jobu = StringValueCStr(rblapack_jobu)[0];
jobq = StringValueCStr(rblapack_jobq)[0];
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
n = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
b = NA_PTR_TYPE(rblapack_b, real*);
tolb = (real)NUM2DBL(rblapack_tolb);
p = ldb;
jobv = StringValueCStr(rblapack_jobv)[0];
tola = (real)NUM2DBL(rblapack_tola);
ldv = lsame_(&jobv,"V") ? MAX(1,p) : 1;
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of b");
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
ldq = lsame_(&jobq,"Q") ? MAX(1,n) : 1;
m = lda;
ldu = lsame_(&jobu,"U") ? MAX(1,m) : 1;
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = m;
rblapack_u = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
u = NA_PTR_TYPE(rblapack_u, real*);
{
na_shape_t shape[2];
shape[0] = ldv;
shape[1] = p;
rblapack_v = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
v = NA_PTR_TYPE(rblapack_v, real*);
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = n;
rblapack_q = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
q = NA_PTR_TYPE(rblapack_q, real*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = n;
rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
iwork = ALLOC_N(integer, (n));
tau = ALLOC_N(real, (n));
work = ALLOC_N(real, (MAX(MAX(3*n,m),p)));
sggsvp_(&jobu, &jobv, &jobq, &m, &p, &n, a, &lda, b, &ldb, &tola, &tolb, &k, &l, u, &ldu, v, &ldv, q, &ldq, iwork, tau, work, &info);
free(iwork);
free(tau);
free(work);
rblapack_k = INT2NUM(k);
rblapack_l = INT2NUM(l);
rblapack_info = INT2NUM(info);
return rb_ary_new3(8, rblapack_k, rblapack_l, rblapack_u, rblapack_v, rblapack_q, rblapack_info, rblapack_a, rblapack_b);
}
void
init_lapack_sggsvp(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "sggsvp", rblapack_sggsvp, -1);
}
|