File: sla_syrcond.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (134 lines) | stat: -rw-r--r-- 7,823 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include "rb_lapack.h"

extern real sla_syrcond_(char* uplo, integer* n, real* a, integer* lda, real* af, integer* ldaf, integer* ipiv, integer* cmode, real* c, integer* info, real* work, integer* iwork);


static VALUE
rblapack_sla_syrcond(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_af;
  real *af; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_cmode;
  integer cmode; 
  VALUE rblapack_c;
  real *c; 
  VALUE rblapack_work;
  real *work; 
  VALUE rblapack_iwork;
  integer *iwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack___out__;
  real __out__; 

  integer lda;
  integer n;
  integer ldaf;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, __out__ = NumRu::Lapack.sla_syrcond( uplo, a, af, ipiv, cmode, c, work, iwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      REAL FUNCTION SLA_SYRCOND( UPLO, N, A, LDA, AF, LDAF, IPIV, CMODE, C, INFO, WORK, IWORK )\n\n*  Purpose\n*  =======\n*\n*     SLA_SYRCOND estimates the Skeel condition number of  op(A) * op2(C)\n*     where op2 is determined by CMODE as follows\n*     CMODE =  1    op2(C) = C\n*     CMODE =  0    op2(C) = I\n*     CMODE = -1    op2(C) = inv(C)\n*     The Skeel condition number cond(A) = norminf( |inv(A)||A| )\n*     is computed by computing scaling factors R such that\n*     diag(R)*A*op2(C) is row equilibrated and computing the standard\n*     infinity-norm condition number.\n*\n\n*  Arguments\n*  ==========\n*\n*     UPLO    (input) CHARACTER*1\n*       = 'U':  Upper triangle of A is stored;\n*       = 'L':  Lower triangle of A is stored.\n*\n*     N       (input) INTEGER\n*     The number of linear equations, i.e., the order of the\n*     matrix A.  N >= 0.\n*\n*     A       (input) REAL array, dimension (LDA,N)\n*     On entry, the N-by-N matrix A.\n*\n*     LDA     (input) INTEGER\n*     The leading dimension of the array A.  LDA >= max(1,N).\n*\n*     AF      (input) REAL array, dimension (LDAF,N)\n*     The block diagonal matrix D and the multipliers used to\n*     obtain the factor U or L as computed by SSYTRF.\n*\n*     LDAF    (input) INTEGER\n*     The leading dimension of the array AF.  LDAF >= max(1,N).\n*\n*     IPIV    (input) INTEGER array, dimension (N)\n*     Details of the interchanges and the block structure of D\n*     as determined by SSYTRF.\n*\n*     CMODE   (input) INTEGER\n*     Determines op2(C) in the formula op(A) * op2(C) as follows:\n*     CMODE =  1    op2(C) = C\n*     CMODE =  0    op2(C) = I\n*     CMODE = -1    op2(C) = inv(C)\n*\n*     C       (input) REAL array, dimension (N)\n*     The vector C in the formula op(A) * op2(C).\n*\n*     INFO    (output) INTEGER\n*       = 0:  Successful exit.\n*     i > 0:  The ith argument is invalid.\n*\n*     WORK    (input) REAL array, dimension (3*N).\n*     Workspace.\n*\n*     IWORK   (input) INTEGER array, dimension (N).\n*     Workspace.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      CHARACTER          NORMIN\n      INTEGER            KASE, I, J\n      REAL               AINVNM, SMLNUM, TMP\n      LOGICAL            UP\n*     ..\n*     .. Local Arrays ..\n      INTEGER            ISAVE( 3 )\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      INTEGER            ISAMAX\n      REAL               SLAMCH\n      EXTERNAL           LSAME, ISAMAX, SLAMCH\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           SLACN2, SLATRS, SRSCL, XERBLA, SSYTRS\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          ABS, MAX\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, __out__ = NumRu::Lapack.sla_syrcond( uplo, a, af, ipiv, cmode, c, work, iwork, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_uplo = argv[0];
  rblapack_a = argv[1];
  rblapack_af = argv[2];
  rblapack_ipiv = argv[3];
  rblapack_cmode = argv[4];
  rblapack_c = argv[5];
  rblapack_work = argv[6];
  rblapack_iwork = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_af))
    rb_raise(rb_eArgError, "af (3th argument) must be NArray");
  if (NA_RANK(rblapack_af) != 2)
    rb_raise(rb_eArgError, "rank of af (3th argument) must be %d", 2);
  ldaf = NA_SHAPE0(rblapack_af);
  n = NA_SHAPE1(rblapack_af);
  if (NA_TYPE(rblapack_af) != NA_SFLOAT)
    rblapack_af = na_change_type(rblapack_af, NA_SFLOAT);
  af = NA_PTR_TYPE(rblapack_af, real*);
  cmode = NUM2INT(rblapack_cmode);
  if (!NA_IsNArray(rblapack_iwork))
    rb_raise(rb_eArgError, "iwork (8th argument) must be NArray");
  if (NA_RANK(rblapack_iwork) != 1)
    rb_raise(rb_eArgError, "rank of iwork (8th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_iwork) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of iwork must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_iwork) != NA_LINT)
    rblapack_iwork = na_change_type(rblapack_iwork, NA_LINT);
  iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (6th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_c) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of c must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_c) != NA_SFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_SFLOAT);
  c = NA_PTR_TYPE(rblapack_c, real*);
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (4th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ipiv) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_work))
    rb_raise(rb_eArgError, "work (7th argument) must be NArray");
  if (NA_RANK(rblapack_work) != 1)
    rb_raise(rb_eArgError, "rank of work (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_work) != (3*n))
    rb_raise(rb_eRuntimeError, "shape 0 of work must be %d", 3*n);
  if (NA_TYPE(rblapack_work) != NA_SFLOAT)
    rblapack_work = na_change_type(rblapack_work, NA_SFLOAT);
  work = NA_PTR_TYPE(rblapack_work, real*);

  __out__ = sla_syrcond_(&uplo, &n, a, &lda, af, &ldaf, ipiv, &cmode, c, &info, work, iwork);

  rblapack_info = INT2NUM(info);
  rblapack___out__ = rb_float_new((double)__out__);
  return rb_ary_new3(2, rblapack_info, rblapack___out__);
}

void
init_lapack_sla_syrcond(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "sla_syrcond", rblapack_sla_syrcond, -1);
}