File: slaed2.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (189 lines) | stat: -rw-r--r-- 11,072 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include "rb_lapack.h"

extern VOID slaed2_(integer* k, integer* n, integer* n1, real* d, real* q, integer* ldq, integer* indxq, real* rho, real* z, real* dlamda, real* w, real* q2, integer* indx, integer* indxc, integer* indxp, integer* coltyp, integer* info);


static VALUE
rblapack_slaed2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_n1;
  integer n1; 
  VALUE rblapack_d;
  real *d; 
  VALUE rblapack_q;
  real *q; 
  VALUE rblapack_indxq;
  integer *indxq; 
  VALUE rblapack_rho;
  real rho; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_k;
  integer k; 
  VALUE rblapack_dlamda;
  real *dlamda; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_q2;
  real *q2; 
  VALUE rblapack_indxc;
  integer *indxc; 
  VALUE rblapack_coltyp;
  integer *coltyp; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_d_out__;
  real *d_out__;
  VALUE rblapack_q_out__;
  real *q_out__;
  VALUE rblapack_indxq_out__;
  integer *indxq_out__;
  integer *indx;
  integer *indxp;

  integer n;
  integer ldq;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  k, dlamda, w, q2, indxc, coltyp, info, d, q, indxq, rho = NumRu::Lapack.slaed2( n1, d, q, indxq, rho, z, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, Q2, INDX, INDXC, INDXP, COLTYP, INFO )\n\n*  Purpose\n*  =======\n*\n*  SLAED2 merges the two sets of eigenvalues together into a single\n*  sorted set.  Then it tries to deflate the size of the problem.\n*  There are two ways in which deflation can occur:  when two or more\n*  eigenvalues are close together or if there is a tiny entry in the\n*  Z vector.  For each such occurrence the order of the related secular\n*  equation problem is reduced by one.\n*\n\n*  Arguments\n*  =========\n*\n*  K      (output) INTEGER\n*         The number of non-deflated eigenvalues, and the order of the\n*         related secular equation. 0 <= K <=N.\n*\n*  N      (input) INTEGER\n*         The dimension of the symmetric tridiagonal matrix.  N >= 0.\n*\n*  N1     (input) INTEGER\n*         The location of the last eigenvalue in the leading sub-matrix.\n*         min(1,N) <= N1 <= N/2.\n*\n*  D      (input/output) REAL array, dimension (N)\n*         On entry, D contains the eigenvalues of the two submatrices to\n*         be combined.\n*         On exit, D contains the trailing (N-K) updated eigenvalues\n*         (those which were deflated) sorted into increasing order.\n*\n*  Q      (input/output) REAL array, dimension (LDQ, N)\n*         On entry, Q contains the eigenvectors of two submatrices in\n*         the two square blocks with corners at (1,1), (N1,N1)\n*         and (N1+1, N1+1), (N,N).\n*         On exit, Q contains the trailing (N-K) updated eigenvectors\n*         (those which were deflated) in its last N-K columns.\n*\n*  LDQ    (input) INTEGER\n*         The leading dimension of the array Q.  LDQ >= max(1,N).\n*\n*  INDXQ  (input/output) INTEGER array, dimension (N)\n*         The permutation which separately sorts the two sub-problems\n*         in D into ascending order.  Note that elements in the second\n*         half of this permutation must first have N1 added to their\n*         values. Destroyed on exit.\n*\n*  RHO    (input/output) REAL\n*         On entry, the off-diagonal element associated with the rank-1\n*         cut which originally split the two submatrices which are now\n*         being recombined.\n*         On exit, RHO has been modified to the value required by\n*         SLAED3.\n*\n*  Z      (input) REAL array, dimension (N)\n*         On entry, Z contains the updating vector (the last\n*         row of the first sub-eigenvector matrix and the first row of\n*         the second sub-eigenvector matrix).\n*         On exit, the contents of Z have been destroyed by the updating\n*         process.\n*\n*  DLAMDA (output) REAL array, dimension (N)\n*         A copy of the first K eigenvalues which will be used by\n*         SLAED3 to form the secular equation.\n*\n*  W      (output) REAL array, dimension (N)\n*         The first k values of the final deflation-altered z-vector\n*         which will be passed to SLAED3.\n*\n*  Q2     (output) REAL array, dimension (N1**2+(N-N1)**2)\n*         A copy of the first K eigenvectors which will be used by\n*         SLAED3 in a matrix multiply (SGEMM) to solve for the new\n*         eigenvectors.\n*\n*  INDX   (workspace) INTEGER array, dimension (N)\n*         The permutation used to sort the contents of DLAMDA into\n*         ascending order.\n*\n*  INDXC  (output) INTEGER array, dimension (N)\n*         The permutation used to arrange the columns of the deflated\n*         Q matrix into three groups:  the first group contains non-zero\n*         elements only at and above N1, the second contains\n*         non-zero elements only below N1, and the third is dense.\n*\n*  INDXP  (workspace) INTEGER array, dimension (N)\n*         The permutation used to place deflated values of D at the end\n*         of the array.  INDXP(1:K) points to the nondeflated D-values\n*         and INDXP(K+1:N) points to the deflated eigenvalues.\n*\n*  COLTYP (workspace/output) INTEGER array, dimension (N)\n*         During execution, a label which will indicate which of the\n*         following types a column in the Q2 matrix is:\n*         1 : non-zero in the upper half only;\n*         2 : dense;\n*         3 : non-zero in the lower half only;\n*         4 : deflated.\n*         On exit, COLTYP(i) is the number of columns of type i,\n*         for i=1 to 4 only.\n*\n*  INFO   (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Jeff Rutter, Computer Science Division, University of California\n*     at Berkeley, USA\n*  Modified by Francoise Tisseur, University of Tennessee.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  k, dlamda, w, q2, indxc, coltyp, info, d, q, indxq, rho = NumRu::Lapack.slaed2( n1, d, q, indxq, rho, z, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_n1 = argv[0];
  rblapack_d = argv[1];
  rblapack_q = argv[2];
  rblapack_indxq = argv[3];
  rblapack_rho = argv[4];
  rblapack_z = argv[5];
  if (argc == 6) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  n1 = NUM2INT(rblapack_n1);
  if (!NA_IsNArray(rblapack_q))
    rb_raise(rb_eArgError, "q (3th argument) must be NArray");
  if (NA_RANK(rblapack_q) != 2)
    rb_raise(rb_eArgError, "rank of q (3th argument) must be %d", 2);
  ldq = NA_SHAPE0(rblapack_q);
  n = NA_SHAPE1(rblapack_q);
  if (NA_TYPE(rblapack_q) != NA_SFLOAT)
    rblapack_q = na_change_type(rblapack_q, NA_SFLOAT);
  q = NA_PTR_TYPE(rblapack_q, real*);
  rho = (real)NUM2DBL(rblapack_rho);
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (2th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_d) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 1 of q");
  if (NA_TYPE(rblapack_d) != NA_SFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
  d = NA_PTR_TYPE(rblapack_d, real*);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (6th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 1)
    rb_raise(rb_eArgError, "rank of z (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_z) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of z must be the same as shape 1 of q");
  if (NA_TYPE(rblapack_z) != NA_SFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
  z = NA_PTR_TYPE(rblapack_z, real*);
  if (!NA_IsNArray(rblapack_indxq))
    rb_raise(rb_eArgError, "indxq (4th argument) must be NArray");
  if (NA_RANK(rblapack_indxq) != 1)
    rb_raise(rb_eArgError, "rank of indxq (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_indxq) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of indxq must be the same as shape 1 of q");
  if (NA_TYPE(rblapack_indxq) != NA_LINT)
    rblapack_indxq = na_change_type(rblapack_indxq, NA_LINT);
  indxq = NA_PTR_TYPE(rblapack_indxq, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_dlamda = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  dlamda = NA_PTR_TYPE(rblapack_dlamda, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, real*);
  {
    na_shape_t shape[1];
    shape[0] = pow(n1,2)+pow(n-n1,2);
    rblapack_q2 = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  q2 = NA_PTR_TYPE(rblapack_q2, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_indxc = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  indxc = NA_PTR_TYPE(rblapack_indxc, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_coltyp = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  coltyp = NA_PTR_TYPE(rblapack_coltyp, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_d_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  d_out__ = NA_PTR_TYPE(rblapack_d_out__, real*);
  MEMCPY(d_out__, d, real, NA_TOTAL(rblapack_d));
  rblapack_d = rblapack_d_out__;
  d = d_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldq;
    shape[1] = n;
    rblapack_q_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  q_out__ = NA_PTR_TYPE(rblapack_q_out__, real*);
  MEMCPY(q_out__, q, real, NA_TOTAL(rblapack_q));
  rblapack_q = rblapack_q_out__;
  q = q_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_indxq_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  indxq_out__ = NA_PTR_TYPE(rblapack_indxq_out__, integer*);
  MEMCPY(indxq_out__, indxq, integer, NA_TOTAL(rblapack_indxq));
  rblapack_indxq = rblapack_indxq_out__;
  indxq = indxq_out__;
  indx = ALLOC_N(integer, (n));
  indxp = ALLOC_N(integer, (n));

  slaed2_(&k, &n, &n1, d, q, &ldq, indxq, &rho, z, dlamda, w, q2, indx, indxc, indxp, coltyp, &info);

  free(indx);
  free(indxp);
  rblapack_k = INT2NUM(k);
  rblapack_info = INT2NUM(info);
  rblapack_rho = rb_float_new((double)rho);
  return rb_ary_new3(11, rblapack_k, rblapack_dlamda, rblapack_w, rblapack_q2, rblapack_indxc, rblapack_coltyp, rblapack_info, rblapack_d, rblapack_q, rblapack_indxq, rblapack_rho);
}

void
init_lapack_slaed2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slaed2", rblapack_slaed2, -1);
}