1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
#include "rb_lapack.h"
extern VOID slaed6_(integer* kniter, logical* orgati, real* rho, real* d, real* z, real* finit, real* tau, integer* info);
static VALUE
rblapack_slaed6(int argc, VALUE *argv, VALUE self){
VALUE rblapack_kniter;
integer kniter;
VALUE rblapack_orgati;
logical orgati;
VALUE rblapack_rho;
real rho;
VALUE rblapack_d;
real *d;
VALUE rblapack_z;
real *z;
VALUE rblapack_finit;
real finit;
VALUE rblapack_tau;
real tau;
VALUE rblapack_info;
integer info;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n tau, info = NumRu::Lapack.slaed6( kniter, orgati, rho, d, z, finit, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAED6( KNITER, ORGATI, RHO, D, Z, FINIT, TAU, INFO )\n\n* Purpose\n* =======\n*\n* SLAED6 computes the positive or negative root (closest to the origin)\n* of\n* z(1) z(2) z(3)\n* f(x) = rho + --------- + ---------- + ---------\n* d(1)-x d(2)-x d(3)-x\n*\n* It is assumed that\n*\n* if ORGATI = .true. the root is between d(2) and d(3);\n* otherwise it is between d(1) and d(2)\n*\n* This routine will be called by SLAED4 when necessary. In most cases,\n* the root sought is the smallest in magnitude, though it might not be\n* in some extremely rare situations.\n*\n\n* Arguments\n* =========\n*\n* KNITER (input) INTEGER\n* Refer to SLAED4 for its significance.\n*\n* ORGATI (input) LOGICAL\n* If ORGATI is true, the needed root is between d(2) and\n* d(3); otherwise it is between d(1) and d(2). See\n* SLAED4 for further details.\n*\n* RHO (input) REAL \n* Refer to the equation f(x) above.\n*\n* D (input) REAL array, dimension (3)\n* D satisfies d(1) < d(2) < d(3).\n*\n* Z (input) REAL array, dimension (3)\n* Each of the elements in z must be positive.\n*\n* FINIT (input) REAL \n* The value of f at 0. It is more accurate than the one\n* evaluated inside this routine (if someone wants to do\n* so).\n*\n* TAU (output) REAL \n* The root of the equation f(x).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* > 0: if INFO = 1, failure to converge\n*\n\n* Further Details\n* ===============\n*\n* 30/06/99: Based on contributions by\n* Ren-Cang Li, Computer Science Division, University of California\n* at Berkeley, USA\n*\n* 10/02/03: This version has a few statements commented out for thread safety\n* (machine parameters are computed on each entry). SJH.\n*\n* 05/10/06: Modified from a new version of Ren-Cang Li, use\n* Gragg-Thornton-Warner cubic convergent scheme for better stability.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n tau, info = NumRu::Lapack.slaed6( kniter, orgati, rho, d, z, finit, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_kniter = argv[0];
rblapack_orgati = argv[1];
rblapack_rho = argv[2];
rblapack_d = argv[3];
rblapack_z = argv[4];
rblapack_finit = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
kniter = NUM2INT(rblapack_kniter);
rho = (real)NUM2DBL(rblapack_rho);
if (!NA_IsNArray(rblapack_z))
rb_raise(rb_eArgError, "z (5th argument) must be NArray");
if (NA_RANK(rblapack_z) != 1)
rb_raise(rb_eArgError, "rank of z (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_z) != (3))
rb_raise(rb_eRuntimeError, "shape 0 of z must be %d", 3);
if (NA_TYPE(rblapack_z) != NA_SFLOAT)
rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
z = NA_PTR_TYPE(rblapack_z, real*);
orgati = (rblapack_orgati == Qtrue);
finit = (real)NUM2DBL(rblapack_finit);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (4th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != (3))
rb_raise(rb_eRuntimeError, "shape 0 of d must be %d", 3);
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
slaed6_(&kniter, &orgati, &rho, d, z, &finit, &tau, &info);
rblapack_tau = rb_float_new((double)tau);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_tau, rblapack_info);
}
void
init_lapack_slaed6(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slaed6", rblapack_slaed6, -1);
}
|