1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#include "rb_lapack.h"
extern VOID slaed9_(integer* k, integer* kstart, integer* kstop, integer* n, real* d, real* q, integer* ldq, real* rho, real* dlamda, real* w, real* s, integer* lds, integer* info);
static VALUE
rblapack_slaed9(int argc, VALUE *argv, VALUE self){
VALUE rblapack_kstart;
integer kstart;
VALUE rblapack_kstop;
integer kstop;
VALUE rblapack_n;
integer n;
VALUE rblapack_rho;
real rho;
VALUE rblapack_dlamda;
real *dlamda;
VALUE rblapack_w;
real *w;
VALUE rblapack_d;
real *d;
VALUE rblapack_s;
real *s;
VALUE rblapack_info;
integer info;
real *q;
integer k;
integer lds;
integer ldq;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n d, s, info = NumRu::Lapack.slaed9( kstart, kstop, n, rho, dlamda, w, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W, S, LDS, INFO )\n\n* Purpose\n* =======\n*\n* SLAED9 finds the roots of the secular equation, as defined by the\n* values in D, Z, and RHO, between KSTART and KSTOP. It makes the\n* appropriate calls to SLAED4 and then stores the new matrix of\n* eigenvectors for use in calculating the next level of Z vectors.\n*\n\n* Arguments\n* =========\n*\n* K (input) INTEGER\n* The number of terms in the rational function to be solved by\n* SLAED4. K >= 0.\n*\n* KSTART (input) INTEGER\n* KSTOP (input) INTEGER\n* The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP\n* are to be computed. 1 <= KSTART <= KSTOP <= K.\n*\n* N (input) INTEGER\n* The number of rows and columns in the Q matrix.\n* N >= K (delation may result in N > K).\n*\n* D (output) REAL array, dimension (N)\n* D(I) contains the updated eigenvalues\n* for KSTART <= I <= KSTOP.\n*\n* Q (workspace) REAL array, dimension (LDQ,N)\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= max( 1, N ).\n*\n* RHO (input) REAL\n* The value of the parameter in the rank one update equation.\n* RHO >= 0 required.\n*\n* DLAMDA (input) REAL array, dimension (K)\n* The first K elements of this array contain the old roots\n* of the deflated updating problem. These are the poles\n* of the secular equation.\n*\n* W (input) REAL array, dimension (K)\n* The first K elements of this array contain the components\n* of the deflation-adjusted updating vector.\n*\n* S (output) REAL array, dimension (LDS, K)\n* Will contain the eigenvectors of the repaired matrix which\n* will be stored for subsequent Z vector calculation and\n* multiplied by the previously accumulated eigenvectors\n* to update the system.\n*\n* LDS (input) INTEGER\n* The leading dimension of S. LDS >= max( 1, K ).\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = 1, an eigenvalue did not converge\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Jeff Rutter, Computer Science Division, University of California\n* at Berkeley, USA\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n INTEGER I, J\n REAL TEMP\n* ..\n* .. External Functions ..\n REAL SLAMC3, SNRM2\n EXTERNAL SLAMC3, SNRM2\n* ..\n* .. External Subroutines ..\n EXTERNAL SCOPY, SLAED4, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX, SIGN, SQRT\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n d, s, info = NumRu::Lapack.slaed9( kstart, kstop, n, rho, dlamda, w, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_kstart = argv[0];
rblapack_kstop = argv[1];
rblapack_n = argv[2];
rblapack_rho = argv[3];
rblapack_dlamda = argv[4];
rblapack_w = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
kstart = NUM2INT(rblapack_kstart);
n = NUM2INT(rblapack_n);
if (!NA_IsNArray(rblapack_dlamda))
rb_raise(rb_eArgError, "dlamda (5th argument) must be NArray");
if (NA_RANK(rblapack_dlamda) != 1)
rb_raise(rb_eArgError, "rank of dlamda (5th argument) must be %d", 1);
k = NA_SHAPE0(rblapack_dlamda);
if (NA_TYPE(rblapack_dlamda) != NA_SFLOAT)
rblapack_dlamda = na_change_type(rblapack_dlamda, NA_SFLOAT);
dlamda = NA_PTR_TYPE(rblapack_dlamda, real*);
ldq = MAX( 1, n );
kstop = NUM2INT(rblapack_kstop);
if (!NA_IsNArray(rblapack_w))
rb_raise(rb_eArgError, "w (6th argument) must be NArray");
if (NA_RANK(rblapack_w) != 1)
rb_raise(rb_eArgError, "rank of w (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_w) != k)
rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 0 of dlamda");
if (NA_TYPE(rblapack_w) != NA_SFLOAT)
rblapack_w = na_change_type(rblapack_w, NA_SFLOAT);
w = NA_PTR_TYPE(rblapack_w, real*);
rho = (real)NUM2DBL(rblapack_rho);
lds = MAX( 1, k );
{
na_shape_t shape[1];
shape[0] = MAX(1,n);
rblapack_d = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
d = NA_PTR_TYPE(rblapack_d, real*);
{
na_shape_t shape[2];
shape[0] = lds;
shape[1] = k;
rblapack_s = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
s = NA_PTR_TYPE(rblapack_s, real*);
q = ALLOC_N(real, (ldq)*(MAX(1,n)));
slaed9_(&k, &kstart, &kstop, &n, d, q, &ldq, &rho, dlamda, w, s, &lds, &info);
free(q);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_d, rblapack_s, rblapack_info);
}
void
init_lapack_slaed9(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slaed9", rblapack_slaed9, -1);
}
|