1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#include "rb_lapack.h"
extern VOID slaqps_(integer* m, integer* n, integer* offset, integer* nb, integer* kb, real* a, integer* lda, integer* jpvt, real* tau, real* vn1, real* vn2, real* auxv, real* f, integer* ldf);
static VALUE
rblapack_slaqps(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_offset;
integer offset;
VALUE rblapack_a;
real *a;
VALUE rblapack_jpvt;
integer *jpvt;
VALUE rblapack_vn1;
real *vn1;
VALUE rblapack_vn2;
real *vn2;
VALUE rblapack_auxv;
real *auxv;
VALUE rblapack_f;
real *f;
VALUE rblapack_kb;
integer kb;
VALUE rblapack_tau;
real *tau;
VALUE rblapack_a_out__;
real *a_out__;
VALUE rblapack_jpvt_out__;
integer *jpvt_out__;
VALUE rblapack_vn1_out__;
real *vn1_out__;
VALUE rblapack_vn2_out__;
real *vn2_out__;
VALUE rblapack_auxv_out__;
real *auxv_out__;
VALUE rblapack_f_out__;
real *f_out__;
integer lda;
integer n;
integer nb;
integer ldf;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n kb, tau, a, jpvt, vn1, vn2, auxv, f = NumRu::Lapack.slaqps( m, offset, a, jpvt, vn1, vn2, auxv, f, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, VN2, AUXV, F, LDF )\n\n* Purpose\n* =======\n*\n* SLAQPS computes a step of QR factorization with column pivoting\n* of a real M-by-N matrix A by using Blas-3. It tries to factorize\n* NB columns from A starting from the row OFFSET+1, and updates all\n* of the matrix with Blas-3 xGEMM.\n*\n* In some cases, due to catastrophic cancellations, it cannot\n* factorize NB columns. Hence, the actual number of factorized\n* columns is returned in KB.\n*\n* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0\n*\n* OFFSET (input) INTEGER\n* The number of rows of A that have been factorized in\n* previous steps.\n*\n* NB (input) INTEGER\n* The number of columns to factorize.\n*\n* KB (output) INTEGER\n* The number of columns actually factorized.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, block A(OFFSET+1:M,1:KB) is the triangular\n* factor obtained and block A(1:OFFSET,1:N) has been\n* accordingly pivoted, but no factorized.\n* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has\n* been updated.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* JPVT (input/output) INTEGER array, dimension (N)\n* JPVT(I) = K <==> Column K of the full matrix A has been\n* permuted into position I in AP.\n*\n* TAU (output) REAL array, dimension (KB)\n* The scalar factors of the elementary reflectors.\n*\n* VN1 (input/output) REAL array, dimension (N)\n* The vector with the partial column norms.\n*\n* VN2 (input/output) REAL array, dimension (N)\n* The vector with the exact column norms.\n*\n* AUXV (input/output) REAL array, dimension (NB)\n* Auxiliar vector.\n*\n* F (input/output) REAL array, dimension (LDF,NB)\n* Matrix F' = L*Y'*A.\n*\n* LDF (input) INTEGER\n* The leading dimension of the array F. LDF >= max(1,N).\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain\n* X. Sun, Computer Science Dept., Duke University, USA\n*\n* Partial column norm updating strategy modified by\n* Z. Drmac and Z. Bujanovic, Dept. of Mathematics,\n* University of Zagreb, Croatia.\n* June 2010\n* For more details see LAPACK Working Note 176.\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n kb, tau, a, jpvt, vn1, vn2, auxv, f = NumRu::Lapack.slaqps( m, offset, a, jpvt, vn1, vn2, auxv, f, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_m = argv[0];
rblapack_offset = argv[1];
rblapack_a = argv[2];
rblapack_jpvt = argv[3];
rblapack_vn1 = argv[4];
rblapack_vn2 = argv[5];
rblapack_auxv = argv[6];
rblapack_f = argv[7];
if (argc == 8) {
} else if (rblapack_options != Qnil) {
} else {
}
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
if (!NA_IsNArray(rblapack_vn1))
rb_raise(rb_eArgError, "vn1 (5th argument) must be NArray");
if (NA_RANK(rblapack_vn1) != 1)
rb_raise(rb_eArgError, "rank of vn1 (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_vn1) != n)
rb_raise(rb_eRuntimeError, "shape 0 of vn1 must be the same as shape 1 of a");
if (NA_TYPE(rblapack_vn1) != NA_SFLOAT)
rblapack_vn1 = na_change_type(rblapack_vn1, NA_SFLOAT);
vn1 = NA_PTR_TYPE(rblapack_vn1, real*);
if (!NA_IsNArray(rblapack_auxv))
rb_raise(rb_eArgError, "auxv (7th argument) must be NArray");
if (NA_RANK(rblapack_auxv) != 1)
rb_raise(rb_eArgError, "rank of auxv (7th argument) must be %d", 1);
nb = NA_SHAPE0(rblapack_auxv);
if (NA_TYPE(rblapack_auxv) != NA_SFLOAT)
rblapack_auxv = na_change_type(rblapack_auxv, NA_SFLOAT);
auxv = NA_PTR_TYPE(rblapack_auxv, real*);
offset = NUM2INT(rblapack_offset);
if (!NA_IsNArray(rblapack_vn2))
rb_raise(rb_eArgError, "vn2 (6th argument) must be NArray");
if (NA_RANK(rblapack_vn2) != 1)
rb_raise(rb_eArgError, "rank of vn2 (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_vn2) != n)
rb_raise(rb_eRuntimeError, "shape 0 of vn2 must be the same as shape 1 of a");
if (NA_TYPE(rblapack_vn2) != NA_SFLOAT)
rblapack_vn2 = na_change_type(rblapack_vn2, NA_SFLOAT);
vn2 = NA_PTR_TYPE(rblapack_vn2, real*);
if (!NA_IsNArray(rblapack_jpvt))
rb_raise(rb_eArgError, "jpvt (4th argument) must be NArray");
if (NA_RANK(rblapack_jpvt) != 1)
rb_raise(rb_eArgError, "rank of jpvt (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_jpvt) != n)
rb_raise(rb_eRuntimeError, "shape 0 of jpvt must be the same as shape 1 of a");
if (NA_TYPE(rblapack_jpvt) != NA_LINT)
rblapack_jpvt = na_change_type(rblapack_jpvt, NA_LINT);
jpvt = NA_PTR_TYPE(rblapack_jpvt, integer*);
if (!NA_IsNArray(rblapack_f))
rb_raise(rb_eArgError, "f (8th argument) must be NArray");
if (NA_RANK(rblapack_f) != 2)
rb_raise(rb_eArgError, "rank of f (8th argument) must be %d", 2);
ldf = NA_SHAPE0(rblapack_f);
if (NA_SHAPE1(rblapack_f) != nb)
rb_raise(rb_eRuntimeError, "shape 1 of f must be the same as shape 0 of auxv");
if (NA_TYPE(rblapack_f) != NA_SFLOAT)
rblapack_f = na_change_type(rblapack_f, NA_SFLOAT);
f = NA_PTR_TYPE(rblapack_f, real*);
kb = nb;
{
na_shape_t shape[1];
shape[0] = kb;
rblapack_tau = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
tau = NA_PTR_TYPE(rblapack_tau, real*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_jpvt_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
}
jpvt_out__ = NA_PTR_TYPE(rblapack_jpvt_out__, integer*);
MEMCPY(jpvt_out__, jpvt, integer, NA_TOTAL(rblapack_jpvt));
rblapack_jpvt = rblapack_jpvt_out__;
jpvt = jpvt_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_vn1_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
vn1_out__ = NA_PTR_TYPE(rblapack_vn1_out__, real*);
MEMCPY(vn1_out__, vn1, real, NA_TOTAL(rblapack_vn1));
rblapack_vn1 = rblapack_vn1_out__;
vn1 = vn1_out__;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_vn2_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
vn2_out__ = NA_PTR_TYPE(rblapack_vn2_out__, real*);
MEMCPY(vn2_out__, vn2, real, NA_TOTAL(rblapack_vn2));
rblapack_vn2 = rblapack_vn2_out__;
vn2 = vn2_out__;
{
na_shape_t shape[1];
shape[0] = nb;
rblapack_auxv_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
auxv_out__ = NA_PTR_TYPE(rblapack_auxv_out__, real*);
MEMCPY(auxv_out__, auxv, real, NA_TOTAL(rblapack_auxv));
rblapack_auxv = rblapack_auxv_out__;
auxv = auxv_out__;
{
na_shape_t shape[2];
shape[0] = ldf;
shape[1] = nb;
rblapack_f_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
f_out__ = NA_PTR_TYPE(rblapack_f_out__, real*);
MEMCPY(f_out__, f, real, NA_TOTAL(rblapack_f));
rblapack_f = rblapack_f_out__;
f = f_out__;
slaqps_(&m, &n, &offset, &nb, &kb, a, &lda, jpvt, tau, vn1, vn2, auxv, f, &ldf);
rblapack_kb = INT2NUM(kb);
return rb_ary_new3(8, rblapack_kb, rblapack_tau, rblapack_a, rblapack_jpvt, rblapack_vn1, rblapack_vn2, rblapack_auxv, rblapack_f);
}
void
init_lapack_slaqps(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slaqps", rblapack_slaqps, -1);
}
|