File: slaqps.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (208 lines) | stat: -rw-r--r-- 10,037 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include "rb_lapack.h"

extern VOID slaqps_(integer* m, integer* n, integer* offset, integer* nb, integer* kb, real* a, integer* lda, integer* jpvt, real* tau, real* vn1, real* vn2, real* auxv, real* f, integer* ldf);


static VALUE
rblapack_slaqps(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_offset;
  integer offset; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_jpvt;
  integer *jpvt; 
  VALUE rblapack_vn1;
  real *vn1; 
  VALUE rblapack_vn2;
  real *vn2; 
  VALUE rblapack_auxv;
  real *auxv; 
  VALUE rblapack_f;
  real *f; 
  VALUE rblapack_kb;
  integer kb; 
  VALUE rblapack_tau;
  real *tau; 
  VALUE rblapack_a_out__;
  real *a_out__;
  VALUE rblapack_jpvt_out__;
  integer *jpvt_out__;
  VALUE rblapack_vn1_out__;
  real *vn1_out__;
  VALUE rblapack_vn2_out__;
  real *vn2_out__;
  VALUE rblapack_auxv_out__;
  real *auxv_out__;
  VALUE rblapack_f_out__;
  real *f_out__;

  integer lda;
  integer n;
  integer nb;
  integer ldf;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  kb, tau, a, jpvt, vn1, vn2, auxv, f = NumRu::Lapack.slaqps( m, offset, a, jpvt, vn1, vn2, auxv, f, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, VN2, AUXV, F, LDF )\n\n*  Purpose\n*  =======\n*\n*  SLAQPS computes a step of QR factorization with column pivoting\n*  of a real M-by-N matrix A by using Blas-3.  It tries to factorize\n*  NB columns from A starting from the row OFFSET+1, and updates all\n*  of the matrix with Blas-3 xGEMM.\n*\n*  In some cases, due to catastrophic cancellations, it cannot\n*  factorize NB columns.  Hence, the actual number of factorized\n*  columns is returned in KB.\n*\n*  Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.\n*\n\n*  Arguments\n*  =========\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix A. M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrix A. N >= 0\n*\n*  OFFSET  (input) INTEGER\n*          The number of rows of A that have been factorized in\n*          previous steps.\n*\n*  NB      (input) INTEGER\n*          The number of columns to factorize.\n*\n*  KB      (output) INTEGER\n*          The number of columns actually factorized.\n*\n*  A       (input/output) REAL array, dimension (LDA,N)\n*          On entry, the M-by-N matrix A.\n*          On exit, block A(OFFSET+1:M,1:KB) is the triangular\n*          factor obtained and block A(1:OFFSET,1:N) has been\n*          accordingly pivoted, but no factorized.\n*          The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has\n*          been updated.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A. LDA >= max(1,M).\n*\n*  JPVT    (input/output) INTEGER array, dimension (N)\n*          JPVT(I) = K <==> Column K of the full matrix A has been\n*          permuted into position I in AP.\n*\n*  TAU     (output) REAL array, dimension (KB)\n*          The scalar factors of the elementary reflectors.\n*\n*  VN1     (input/output) REAL array, dimension (N)\n*          The vector with the partial column norms.\n*\n*  VN2     (input/output) REAL array, dimension (N)\n*          The vector with the exact column norms.\n*\n*  AUXV    (input/output) REAL array, dimension (NB)\n*          Auxiliar vector.\n*\n*  F       (input/output) REAL array, dimension (LDF,NB)\n*          Matrix F' = L*Y'*A.\n*\n*  LDF     (input) INTEGER\n*          The leading dimension of the array F. LDF >= max(1,N).\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain\n*    X. Sun, Computer Science Dept., Duke University, USA\n*\n*  Partial column norm updating strategy modified by\n*    Z. Drmac and Z. Bujanovic, Dept. of Mathematics,\n*    University of Zagreb, Croatia.\n*     June 2010\n*  For more details see LAPACK Working Note 176.\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  kb, tau, a, jpvt, vn1, vn2, auxv, f = NumRu::Lapack.slaqps( m, offset, a, jpvt, vn1, vn2, auxv, f, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_m = argv[0];
  rblapack_offset = argv[1];
  rblapack_a = argv[2];
  rblapack_jpvt = argv[3];
  rblapack_vn1 = argv[4];
  rblapack_vn2 = argv[5];
  rblapack_auxv = argv[6];
  rblapack_f = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  m = NUM2INT(rblapack_m);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  if (!NA_IsNArray(rblapack_vn1))
    rb_raise(rb_eArgError, "vn1 (5th argument) must be NArray");
  if (NA_RANK(rblapack_vn1) != 1)
    rb_raise(rb_eArgError, "rank of vn1 (5th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_vn1) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of vn1 must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_vn1) != NA_SFLOAT)
    rblapack_vn1 = na_change_type(rblapack_vn1, NA_SFLOAT);
  vn1 = NA_PTR_TYPE(rblapack_vn1, real*);
  if (!NA_IsNArray(rblapack_auxv))
    rb_raise(rb_eArgError, "auxv (7th argument) must be NArray");
  if (NA_RANK(rblapack_auxv) != 1)
    rb_raise(rb_eArgError, "rank of auxv (7th argument) must be %d", 1);
  nb = NA_SHAPE0(rblapack_auxv);
  if (NA_TYPE(rblapack_auxv) != NA_SFLOAT)
    rblapack_auxv = na_change_type(rblapack_auxv, NA_SFLOAT);
  auxv = NA_PTR_TYPE(rblapack_auxv, real*);
  offset = NUM2INT(rblapack_offset);
  if (!NA_IsNArray(rblapack_vn2))
    rb_raise(rb_eArgError, "vn2 (6th argument) must be NArray");
  if (NA_RANK(rblapack_vn2) != 1)
    rb_raise(rb_eArgError, "rank of vn2 (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_vn2) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of vn2 must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_vn2) != NA_SFLOAT)
    rblapack_vn2 = na_change_type(rblapack_vn2, NA_SFLOAT);
  vn2 = NA_PTR_TYPE(rblapack_vn2, real*);
  if (!NA_IsNArray(rblapack_jpvt))
    rb_raise(rb_eArgError, "jpvt (4th argument) must be NArray");
  if (NA_RANK(rblapack_jpvt) != 1)
    rb_raise(rb_eArgError, "rank of jpvt (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_jpvt) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of jpvt must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_jpvt) != NA_LINT)
    rblapack_jpvt = na_change_type(rblapack_jpvt, NA_LINT);
  jpvt = NA_PTR_TYPE(rblapack_jpvt, integer*);
  if (!NA_IsNArray(rblapack_f))
    rb_raise(rb_eArgError, "f (8th argument) must be NArray");
  if (NA_RANK(rblapack_f) != 2)
    rb_raise(rb_eArgError, "rank of f (8th argument) must be %d", 2);
  ldf = NA_SHAPE0(rblapack_f);
  if (NA_SHAPE1(rblapack_f) != nb)
    rb_raise(rb_eRuntimeError, "shape 1 of f must be the same as shape 0 of auxv");
  if (NA_TYPE(rblapack_f) != NA_SFLOAT)
    rblapack_f = na_change_type(rblapack_f, NA_SFLOAT);
  f = NA_PTR_TYPE(rblapack_f, real*);
  kb = nb;
  {
    na_shape_t shape[1];
    shape[0] = kb;
    rblapack_tau = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  tau = NA_PTR_TYPE(rblapack_tau, real*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
  MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_jpvt_out__ = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  jpvt_out__ = NA_PTR_TYPE(rblapack_jpvt_out__, integer*);
  MEMCPY(jpvt_out__, jpvt, integer, NA_TOTAL(rblapack_jpvt));
  rblapack_jpvt = rblapack_jpvt_out__;
  jpvt = jpvt_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_vn1_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  vn1_out__ = NA_PTR_TYPE(rblapack_vn1_out__, real*);
  MEMCPY(vn1_out__, vn1, real, NA_TOTAL(rblapack_vn1));
  rblapack_vn1 = rblapack_vn1_out__;
  vn1 = vn1_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_vn2_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  vn2_out__ = NA_PTR_TYPE(rblapack_vn2_out__, real*);
  MEMCPY(vn2_out__, vn2, real, NA_TOTAL(rblapack_vn2));
  rblapack_vn2 = rblapack_vn2_out__;
  vn2 = vn2_out__;
  {
    na_shape_t shape[1];
    shape[0] = nb;
    rblapack_auxv_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  auxv_out__ = NA_PTR_TYPE(rblapack_auxv_out__, real*);
  MEMCPY(auxv_out__, auxv, real, NA_TOTAL(rblapack_auxv));
  rblapack_auxv = rblapack_auxv_out__;
  auxv = auxv_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldf;
    shape[1] = nb;
    rblapack_f_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  f_out__ = NA_PTR_TYPE(rblapack_f_out__, real*);
  MEMCPY(f_out__, f, real, NA_TOTAL(rblapack_f));
  rblapack_f = rblapack_f_out__;
  f = f_out__;

  slaqps_(&m, &n, &offset, &nb, &kb, a, &lda, jpvt, tau, vn1, vn2, auxv, f, &ldf);

  rblapack_kb = INT2NUM(kb);
  return rb_ary_new3(8, rblapack_kb, rblapack_tau, rblapack_a, rblapack_jpvt, rblapack_vn1, rblapack_vn2, rblapack_auxv, rblapack_f);
}

void
init_lapack_slaqps(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slaqps", rblapack_slaqps, -1);
}