1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
#include "rb_lapack.h"
extern VOID slaqr1_(integer* n, real* h, integer* ldh, real* sr1, real* si1, real* sr2, real* si2, real* v);
static VALUE
rblapack_slaqr1(int argc, VALUE *argv, VALUE self){
VALUE rblapack_h;
real *h;
VALUE rblapack_sr1;
real sr1;
VALUE rblapack_si1;
real si1;
VALUE rblapack_sr2;
real sr2;
VALUE rblapack_si2;
real si2;
VALUE rblapack_v;
real *v;
integer ldh;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n v = NumRu::Lapack.slaqr1( h, sr1, si1, sr2, si2, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )\n\n* Given a 2-by-2 or 3-by-3 matrix H, SLAQR1 sets v to a\n* scalar multiple of the first column of the product\n*\n* (*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)\n*\n* scaling to avoid overflows and most underflows. It\n* is assumed that either\n*\n* 1) sr1 = sr2 and si1 = -si2\n* or\n* 2) si1 = si2 = 0.\n*\n* This is useful for starting double implicit shift bulges\n* in the QR algorithm.\n*\n*\n\n* N (input) integer\n* Order of the matrix H. N must be either 2 or 3.\n*\n* H (input) REAL array of dimension (LDH,N)\n* The 2-by-2 or 3-by-3 matrix H in (*).\n*\n* LDH (input) integer\n* The leading dimension of H as declared in\n* the calling procedure. LDH.GE.N\n*\n* SR1 (input) REAL\n* SI1 The shifts in (*).\n* SR2\n* SI2\n*\n* V (output) REAL array of dimension N\n* A scalar multiple of the first column of the\n* matrix K in (*).\n*\n\n* ================================================================\n* Based on contributions by\n* Karen Braman and Ralph Byers, Department of Mathematics,\n* University of Kansas, USA\n*\n* ================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n v = NumRu::Lapack.slaqr1( h, sr1, si1, sr2, si2, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_h = argv[0];
rblapack_sr1 = argv[1];
rblapack_si1 = argv[2];
rblapack_sr2 = argv[3];
rblapack_si2 = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_h))
rb_raise(rb_eArgError, "h (1th argument) must be NArray");
if (NA_RANK(rblapack_h) != 2)
rb_raise(rb_eArgError, "rank of h (1th argument) must be %d", 2);
ldh = NA_SHAPE0(rblapack_h);
n = NA_SHAPE1(rblapack_h);
if (NA_TYPE(rblapack_h) != NA_SFLOAT)
rblapack_h = na_change_type(rblapack_h, NA_SFLOAT);
h = NA_PTR_TYPE(rblapack_h, real*);
si1 = (real)NUM2DBL(rblapack_si1);
si2 = (real)NUM2DBL(rblapack_si2);
sr1 = (real)NUM2DBL(rblapack_sr1);
sr2 = (real)NUM2DBL(rblapack_sr2);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_v = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
v = NA_PTR_TYPE(rblapack_v, real*);
slaqr1_(&n, h, &ldh, &sr1, &si1, &sr2, &si2, v);
return rblapack_v;
}
void
init_lapack_slaqr1(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slaqr1", rblapack_slaqr1, -1);
}
|