1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
#include "rb_lapack.h"
extern VOID slarrc_(char* jobt, integer* n, real* vl, real* vu, real* d, real* e, real* pivmin, integer* eigcnt, integer* lcnt, integer* rcnt, integer* info);
static VALUE
rblapack_slarrc(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobt;
char jobt;
VALUE rblapack_vl;
real vl;
VALUE rblapack_vu;
real vu;
VALUE rblapack_d;
real *d;
VALUE rblapack_e;
real *e;
VALUE rblapack_pivmin;
real pivmin;
VALUE rblapack_eigcnt;
integer eigcnt;
VALUE rblapack_lcnt;
integer lcnt;
VALUE rblapack_rcnt;
integer rcnt;
VALUE rblapack_info;
integer info;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n eigcnt, lcnt, rcnt, info = NumRu::Lapack.slarrc( jobt, vl, vu, d, e, pivmin, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SLARRC( JOBT, N, VL, VU, D, E, PIVMIN, EIGCNT, LCNT, RCNT, INFO )\n\n* Purpose\n* =======\n*\n* Find the number of eigenvalues of the symmetric tridiagonal matrix T\n* that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T\n* if JOBT = 'L'.\n*\n\n* Arguments\n* =========\n*\n* JOBT (input) CHARACTER*1\n* = 'T': Compute Sturm count for matrix T.\n* = 'L': Compute Sturm count for matrix L D L^T.\n*\n* N (input) INTEGER\n* The order of the matrix. N > 0.\n*\n* VL (input) DOUBLE PRECISION\n* VU (input) DOUBLE PRECISION\n* The lower and upper bounds for the eigenvalues.\n*\n* D (input) DOUBLE PRECISION array, dimension (N)\n* JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.\n* JOBT = 'L': The N diagonal elements of the diagonal matrix D.\n*\n* E (input) DOUBLE PRECISION array, dimension (N)\n* JOBT = 'T': The N-1 offdiagonal elements of the matrix T.\n* JOBT = 'L': The N-1 offdiagonal elements of the matrix L.\n*\n* PIVMIN (input) REAL\n* The minimum pivot in the Sturm sequence for T.\n*\n* EIGCNT (output) INTEGER\n* The number of eigenvalues of the symmetric tridiagonal matrix T\n* that are in the interval (VL,VU]\n*\n* LCNT (output) INTEGER\n* RCNT (output) INTEGER\n* The left and right negcounts of the interval.\n*\n* INFO (output) INTEGER\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Beresford Parlett, University of California, Berkeley, USA\n* Jim Demmel, University of California, Berkeley, USA\n* Inderjit Dhillon, University of Texas, Austin, USA\n* Osni Marques, LBNL/NERSC, USA\n* Christof Voemel, University of California, Berkeley, USA\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n eigcnt, lcnt, rcnt, info = NumRu::Lapack.slarrc( jobt, vl, vu, d, e, pivmin, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_jobt = argv[0];
rblapack_vl = argv[1];
rblapack_vu = argv[2];
rblapack_d = argv[3];
rblapack_e = argv[4];
rblapack_pivmin = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
jobt = StringValueCStr(rblapack_jobt)[0];
vu = (real)NUM2DBL(rblapack_vu);
if (!NA_IsNArray(rblapack_e))
rb_raise(rb_eArgError, "e (5th argument) must be NArray");
if (NA_RANK(rblapack_e) != 1)
rb_raise(rb_eArgError, "rank of e (5th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_e);
if (NA_TYPE(rblapack_e) != NA_SFLOAT)
rblapack_e = na_change_type(rblapack_e, NA_SFLOAT);
e = NA_PTR_TYPE(rblapack_e, real*);
vl = (real)NUM2DBL(rblapack_vl);
pivmin = (real)NUM2DBL(rblapack_pivmin);
if (!NA_IsNArray(rblapack_d))
rb_raise(rb_eArgError, "d (4th argument) must be NArray");
if (NA_RANK(rblapack_d) != 1)
rb_raise(rb_eArgError, "rank of d (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_d) != n)
rb_raise(rb_eRuntimeError, "shape 0 of d must be the same as shape 0 of e");
if (NA_TYPE(rblapack_d) != NA_SFLOAT)
rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
d = NA_PTR_TYPE(rblapack_d, real*);
slarrc_(&jobt, &n, &vl, &vu, d, e, &pivmin, &eigcnt, &lcnt, &rcnt, &info);
rblapack_eigcnt = INT2NUM(eigcnt);
rblapack_lcnt = INT2NUM(lcnt);
rblapack_rcnt = INT2NUM(rcnt);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_eigcnt, rblapack_lcnt, rblapack_rcnt, rblapack_info);
}
void
init_lapack_slarrc(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "slarrc", rblapack_slarrc, -1);
}
|