File: slarrv.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (271 lines) | stat: -rw-r--r-- 16,942 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#include "rb_lapack.h"

extern VOID slarrv_(integer* n, real* vl, real* vu, real* d, real* l, real* pivmin, integer* isplit, integer* m, integer* dol, integer* dou, real* minrgp, real* rtol1, real* rtol2, real* w, real* werr, real* wgap, integer* iblock, integer* indexw, real* gers, real* z, integer* ldz, integer* isuppz, real* work, integer* iwork, integer* info);


static VALUE
rblapack_slarrv(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_vl;
  real vl; 
  VALUE rblapack_vu;
  real vu; 
  VALUE rblapack_d;
  real *d; 
  VALUE rblapack_l;
  real *l; 
  VALUE rblapack_pivmin;
  real pivmin; 
  VALUE rblapack_isplit;
  integer *isplit; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_dol;
  integer dol; 
  VALUE rblapack_dou;
  integer dou; 
  VALUE rblapack_minrgp;
  real minrgp; 
  VALUE rblapack_rtol1;
  real rtol1; 
  VALUE rblapack_rtol2;
  real rtol2; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_werr;
  real *werr; 
  VALUE rblapack_wgap;
  real *wgap; 
  VALUE rblapack_iblock;
  integer *iblock; 
  VALUE rblapack_indexw;
  integer *indexw; 
  VALUE rblapack_gers;
  real *gers; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_isuppz;
  integer *isuppz; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_d_out__;
  real *d_out__;
  VALUE rblapack_l_out__;
  real *l_out__;
  VALUE rblapack_w_out__;
  real *w_out__;
  VALUE rblapack_werr_out__;
  real *werr_out__;
  VALUE rblapack_wgap_out__;
  real *wgap_out__;
  real *work;
  integer *iwork;

  integer n;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  z, isuppz, info, d, l, w, werr, wgap = NumRu::Lapack.slarrv( vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1, rtol2, w, werr, wgap, iblock, indexw, gers, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLARRV( N, VL, VU, D, L, PIVMIN, ISPLIT, M, DOL, DOU, MINRGP, RTOL1, RTOL2, W, WERR, WGAP, IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, WORK, IWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  SLARRV computes the eigenvectors of the tridiagonal matrix\n*  T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T.\n*  The input eigenvalues should have been computed by SLARRE.\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The order of the matrix.  N >= 0.\n*\n*  VL      (input) REAL            \n*  VU      (input) REAL            \n*          Lower and upper bounds of the interval that contains the desired\n*          eigenvalues. VL < VU. Needed to compute gaps on the left or right\n*          end of the extremal eigenvalues in the desired RANGE.\n*\n*  D       (input/output) REAL array, dimension (N)\n*          On entry, the N diagonal elements of the diagonal matrix D.\n*          On exit, D may be overwritten.\n*\n*  L       (input/output) REAL array, dimension (N)\n*          On entry, the (N-1) subdiagonal elements of the unit\n*          bidiagonal matrix L are in elements 1 to N-1 of L\n*          (if the matrix is not split.) At the end of each block\n*          is stored the corresponding shift as given by SLARRE.\n*          On exit, L is overwritten.\n*\n*  PIVMIN  (input) REAL\n*          The minimum pivot allowed in the Sturm sequence.\n*\n*  ISPLIT  (input) INTEGER array, dimension (N)\n*          The splitting points, at which T breaks up into blocks.\n*          The first block consists of rows/columns 1 to\n*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1\n*          through ISPLIT( 2 ), etc.\n*\n*  M       (input) INTEGER\n*          The total number of input eigenvalues.  0 <= M <= N.\n*\n*  DOL     (input) INTEGER\n*  DOU     (input) INTEGER\n*          If the user wants to compute only selected eigenvectors from all\n*          the eigenvalues supplied, he can specify an index range DOL:DOU.\n*          Or else the setting DOL=1, DOU=M should be applied.\n*          Note that DOL and DOU refer to the order in which the eigenvalues\n*          are stored in W.\n*          If the user wants to compute only selected eigenpairs, then\n*          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the\n*          computed eigenvectors. All other columns of Z are set to zero.\n*\n*  MINRGP  (input) REAL            \n*\n*  RTOL1   (input) REAL            \n*  RTOL2   (input) REAL            \n*           Parameters for bisection.\n*           An interval [LEFT,RIGHT] has converged if\n*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )\n*\n*  W       (input/output) REAL             array, dimension (N)\n*          The first M elements of W contain the APPROXIMATE eigenvalues for\n*          which eigenvectors are to be computed.  The eigenvalues\n*          should be grouped by split-off block and ordered from\n*          smallest to largest within the block ( The output array\n*          W from SLARRE is expected here ). Furthermore, they are with\n*          respect to the shift of the corresponding root representation\n*          for their block. On exit, W holds the eigenvalues of the\n*          UNshifted matrix.\n*\n*  WERR    (input/output) REAL array, dimension (N)\n*          The first M elements contain the semiwidth of the uncertainty\n*          interval of the corresponding eigenvalue in W\n*\n*  WGAP    (input/output) REAL array, dimension (N)\n*          The separation from the right neighbor eigenvalue in W.\n*\n*  IBLOCK  (input) INTEGER array, dimension (N)\n*          The indices of the blocks (submatrices) associated with the\n*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue\n*          W(i) belongs to the first block from the top, =2 if W(i)\n*          belongs to the second block, etc.\n*\n*  INDEXW  (input) INTEGER array, dimension (N)\n*          The indices of the eigenvalues within each block (submatrix);\n*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the\n*          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.\n*\n*  GERS    (input) REAL array, dimension (2*N)\n*          The N Gerschgorin intervals (the i-th Gerschgorin interval\n*          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should\n*          be computed from the original UNshifted matrix.\n*\n*  Z       (output) REAL array, dimension (LDZ, max(1,M) )\n*          If INFO = 0, the first M columns of Z contain the\n*          orthonormal eigenvectors of the matrix T\n*          corresponding to the input eigenvalues, with the i-th\n*          column of Z holding the eigenvector associated with W(i).\n*          Note: the user must ensure that at least max(1,M) columns are\n*          supplied in the array Z.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= max(1,N).\n*\n*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )\n*          The support of the eigenvectors in Z, i.e., the indices\n*          indicating the nonzero elements in Z. The I-th eigenvector\n*          is nonzero only in elements ISUPPZ( 2*I-1 ) through\n*          ISUPPZ( 2*I ).\n*\n*  WORK    (workspace) REAL array, dimension (12*N)\n*\n*  IWORK   (workspace) INTEGER array, dimension (7*N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*\n*          > 0:  A problem occurred in SLARRV.\n*          < 0:  One of the called subroutines signaled an internal problem.\n*                Needs inspection of the corresponding parameter IINFO\n*                for further information.\n*\n*          =-1:  Problem in SLARRB when refining a child's eigenvalues.\n*          =-2:  Problem in SLARRF when computing the RRR of a child.\n*                When a child is inside a tight cluster, it can be difficult\n*                to find an RRR. A partial remedy from the user's point of\n*                view is to make the parameter MINRGP smaller and recompile.\n*                However, as the orthogonality of the computed vectors is\n*                proportional to 1/MINRGP, the user should be aware that\n*                he might be trading in precision when he decreases MINRGP.\n*          =-3:  Problem in SLARRB when refining a single eigenvalue\n*                after the Rayleigh correction was rejected.\n*          = 5:  The Rayleigh Quotient Iteration failed to converge to\n*                full accuracy in MAXITR steps.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Beresford Parlett, University of California, Berkeley, USA\n*     Jim Demmel, University of California, Berkeley, USA\n*     Inderjit Dhillon, University of Texas, Austin, USA\n*     Osni Marques, LBNL/NERSC, USA\n*     Christof Voemel, University of California, Berkeley, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  z, isuppz, info, d, l, w, werr, wgap = NumRu::Lapack.slarrv( vl, vu, d, l, pivmin, isplit, m, dol, dou, minrgp, rtol1, rtol2, w, werr, wgap, iblock, indexw, gers, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 18 && argc != 18)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 18)", argc);
  rblapack_vl = argv[0];
  rblapack_vu = argv[1];
  rblapack_d = argv[2];
  rblapack_l = argv[3];
  rblapack_pivmin = argv[4];
  rblapack_isplit = argv[5];
  rblapack_m = argv[6];
  rblapack_dol = argv[7];
  rblapack_dou = argv[8];
  rblapack_minrgp = argv[9];
  rblapack_rtol1 = argv[10];
  rblapack_rtol2 = argv[11];
  rblapack_w = argv[12];
  rblapack_werr = argv[13];
  rblapack_wgap = argv[14];
  rblapack_iblock = argv[15];
  rblapack_indexw = argv[16];
  rblapack_gers = argv[17];
  if (argc == 18) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  vl = (real)NUM2DBL(rblapack_vl);
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (3th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (3th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_SFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
  d = NA_PTR_TYPE(rblapack_d, real*);
  pivmin = (real)NUM2DBL(rblapack_pivmin);
  m = NUM2INT(rblapack_m);
  dou = NUM2INT(rblapack_dou);
  rtol1 = (real)NUM2DBL(rblapack_rtol1);
  if (!NA_IsNArray(rblapack_w))
    rb_raise(rb_eArgError, "w (13th argument) must be NArray");
  if (NA_RANK(rblapack_w) != 1)
    rb_raise(rb_eArgError, "rank of w (13th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_w) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_w) != NA_SFLOAT)
    rblapack_w = na_change_type(rblapack_w, NA_SFLOAT);
  w = NA_PTR_TYPE(rblapack_w, real*);
  if (!NA_IsNArray(rblapack_wgap))
    rb_raise(rb_eArgError, "wgap (15th argument) must be NArray");
  if (NA_RANK(rblapack_wgap) != 1)
    rb_raise(rb_eArgError, "rank of wgap (15th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_wgap) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of wgap must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_wgap) != NA_SFLOAT)
    rblapack_wgap = na_change_type(rblapack_wgap, NA_SFLOAT);
  wgap = NA_PTR_TYPE(rblapack_wgap, real*);
  if (!NA_IsNArray(rblapack_indexw))
    rb_raise(rb_eArgError, "indexw (17th argument) must be NArray");
  if (NA_RANK(rblapack_indexw) != 1)
    rb_raise(rb_eArgError, "rank of indexw (17th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_indexw) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of indexw must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_indexw) != NA_LINT)
    rblapack_indexw = na_change_type(rblapack_indexw, NA_LINT);
  indexw = NA_PTR_TYPE(rblapack_indexw, integer*);
  vu = (real)NUM2DBL(rblapack_vu);
  if (!NA_IsNArray(rblapack_isplit))
    rb_raise(rb_eArgError, "isplit (6th argument) must be NArray");
  if (NA_RANK(rblapack_isplit) != 1)
    rb_raise(rb_eArgError, "rank of isplit (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_isplit) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of isplit must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_isplit) != NA_LINT)
    rblapack_isplit = na_change_type(rblapack_isplit, NA_LINT);
  isplit = NA_PTR_TYPE(rblapack_isplit, integer*);
  minrgp = (real)NUM2DBL(rblapack_minrgp);
  if (!NA_IsNArray(rblapack_werr))
    rb_raise(rb_eArgError, "werr (14th argument) must be NArray");
  if (NA_RANK(rblapack_werr) != 1)
    rb_raise(rb_eArgError, "rank of werr (14th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_werr) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of werr must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_werr) != NA_SFLOAT)
    rblapack_werr = na_change_type(rblapack_werr, NA_SFLOAT);
  werr = NA_PTR_TYPE(rblapack_werr, real*);
  if (!NA_IsNArray(rblapack_l))
    rb_raise(rb_eArgError, "l (4th argument) must be NArray");
  if (NA_RANK(rblapack_l) != 1)
    rb_raise(rb_eArgError, "rank of l (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_l) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of l must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_l) != NA_SFLOAT)
    rblapack_l = na_change_type(rblapack_l, NA_SFLOAT);
  l = NA_PTR_TYPE(rblapack_l, real*);
  rtol2 = (real)NUM2DBL(rblapack_rtol2);
  dol = NUM2INT(rblapack_dol);
  if (!NA_IsNArray(rblapack_iblock))
    rb_raise(rb_eArgError, "iblock (16th argument) must be NArray");
  if (NA_RANK(rblapack_iblock) != 1)
    rb_raise(rb_eArgError, "rank of iblock (16th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_iblock) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of iblock must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_iblock) != NA_LINT)
    rblapack_iblock = na_change_type(rblapack_iblock, NA_LINT);
  iblock = NA_PTR_TYPE(rblapack_iblock, integer*);
  ldz = n;
  if (!NA_IsNArray(rblapack_gers))
    rb_raise(rb_eArgError, "gers (18th argument) must be NArray");
  if (NA_RANK(rblapack_gers) != 1)
    rb_raise(rb_eArgError, "rank of gers (18th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_gers) != (2*n))
    rb_raise(rb_eRuntimeError, "shape 0 of gers must be %d", 2*n);
  if (NA_TYPE(rblapack_gers) != NA_SFLOAT)
    rblapack_gers = na_change_type(rblapack_gers, NA_SFLOAT);
  gers = NA_PTR_TYPE(rblapack_gers, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = MAX(1,m);
    rblapack_z = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, real*);
  {
    na_shape_t shape[1];
    shape[0] = 2*MAX(1,m);
    rblapack_isuppz = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  isuppz = NA_PTR_TYPE(rblapack_isuppz, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_d_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  d_out__ = NA_PTR_TYPE(rblapack_d_out__, real*);
  MEMCPY(d_out__, d, real, NA_TOTAL(rblapack_d));
  rblapack_d = rblapack_d_out__;
  d = d_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_l_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  l_out__ = NA_PTR_TYPE(rblapack_l_out__, real*);
  MEMCPY(l_out__, l, real, NA_TOTAL(rblapack_l));
  rblapack_l = rblapack_l_out__;
  l = l_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w_out__ = NA_PTR_TYPE(rblapack_w_out__, real*);
  MEMCPY(w_out__, w, real, NA_TOTAL(rblapack_w));
  rblapack_w = rblapack_w_out__;
  w = w_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_werr_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  werr_out__ = NA_PTR_TYPE(rblapack_werr_out__, real*);
  MEMCPY(werr_out__, werr, real, NA_TOTAL(rblapack_werr));
  rblapack_werr = rblapack_werr_out__;
  werr = werr_out__;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_wgap_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  wgap_out__ = NA_PTR_TYPE(rblapack_wgap_out__, real*);
  MEMCPY(wgap_out__, wgap, real, NA_TOTAL(rblapack_wgap));
  rblapack_wgap = rblapack_wgap_out__;
  wgap = wgap_out__;
  work = ALLOC_N(real, (12*n));
  iwork = ALLOC_N(integer, (7*n));

  slarrv_(&n, &vl, &vu, d, l, &pivmin, isplit, &m, &dol, &dou, &minrgp, &rtol1, &rtol2, w, werr, wgap, iblock, indexw, gers, z, &ldz, isuppz, work, iwork, &info);

  free(work);
  free(iwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(8, rblapack_z, rblapack_isuppz, rblapack_info, rblapack_d, rblapack_l, rblapack_w, rblapack_werr, rblapack_wgap);
}

void
init_lapack_slarrv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slarrv", rblapack_slarrv, -1);
}