File: slasd7.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (225 lines) | stat: -rw-r--r-- 13,244 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#include "rb_lapack.h"

extern VOID slasd7_(integer* icompq, integer* nl, integer* nr, integer* sqre, integer* k, real* d, real* z, real* zw, real* vf, real* vfw, real* vl, real* vlw, real* alpha, real* beta, real* dsigma, integer* idx, integer* idxp, integer* idxq, integer* perm, integer* givptr, integer* givcol, integer* ldgcol, real* givnum, integer* ldgnum, real* c, real* s, integer* info);


static VALUE
rblapack_slasd7(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_icompq;
  integer icompq; 
  VALUE rblapack_nl;
  integer nl; 
  VALUE rblapack_nr;
  integer nr; 
  VALUE rblapack_sqre;
  integer sqre; 
  VALUE rblapack_d;
  real *d; 
  VALUE rblapack_vf;
  real *vf; 
  VALUE rblapack_vl;
  real *vl; 
  VALUE rblapack_alpha;
  real alpha; 
  VALUE rblapack_beta;
  real beta; 
  VALUE rblapack_idxq;
  integer *idxq; 
  VALUE rblapack_k;
  integer k; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_dsigma;
  real *dsigma; 
  VALUE rblapack_perm;
  integer *perm; 
  VALUE rblapack_givptr;
  integer givptr; 
  VALUE rblapack_givcol;
  integer *givcol; 
  VALUE rblapack_givnum;
  real *givnum; 
  VALUE rblapack_c;
  real c; 
  VALUE rblapack_s;
  real s; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_d_out__;
  real *d_out__;
  VALUE rblapack_vf_out__;
  real *vf_out__;
  VALUE rblapack_vl_out__;
  real *vl_out__;
  real *zw;
  real *vfw;
  real *vlw;
  integer *idx;
  integer *idxp;

  integer n;
  integer m;
  integer ldgcol;
  integer ldgnum;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  k, z, dsigma, perm, givptr, givcol, givnum, c, s, info, d, vf, vl = NumRu::Lapack.slasd7( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S, INFO )\n\n*  Purpose\n*  =======\n*\n*  SLASD7 merges the two sets of singular values together into a single\n*  sorted set. Then it tries to deflate the size of the problem. There\n*  are two ways in which deflation can occur:  when two or more singular\n*  values are close together or if there is a tiny entry in the Z\n*  vector. For each such occurrence the order of the related\n*  secular equation problem is reduced by one.\n*\n*  SLASD7 is called from SLASD6.\n*\n\n*  Arguments\n*  =========\n*\n*  ICOMPQ  (input) INTEGER\n*          Specifies whether singular vectors are to be computed\n*          in compact form, as follows:\n*          = 0: Compute singular values only.\n*          = 1: Compute singular vectors of upper\n*               bidiagonal matrix in compact form.\n*\n*  NL     (input) INTEGER\n*         The row dimension of the upper block. NL >= 1.\n*\n*  NR     (input) INTEGER\n*         The row dimension of the lower block. NR >= 1.\n*\n*  SQRE   (input) INTEGER\n*         = 0: the lower block is an NR-by-NR square matrix.\n*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.\n*\n*         The bidiagonal matrix has\n*         N = NL + NR + 1 rows and\n*         M = N + SQRE >= N columns.\n*\n*  K      (output) INTEGER\n*         Contains the dimension of the non-deflated matrix, this is\n*         the order of the related secular equation. 1 <= K <=N.\n*\n*  D      (input/output) REAL array, dimension ( N )\n*         On entry D contains the singular values of the two submatrices\n*         to be combined. On exit D contains the trailing (N-K) updated\n*         singular values (those which were deflated) sorted into\n*         increasing order.\n*\n*  Z      (output) REAL array, dimension ( M )\n*         On exit Z contains the updating row vector in the secular\n*         equation.\n*\n*  ZW     (workspace) REAL array, dimension ( M )\n*         Workspace for Z.\n*\n*  VF     (input/output) REAL array, dimension ( M )\n*         On entry, VF(1:NL+1) contains the first components of all\n*         right singular vectors of the upper block; and VF(NL+2:M)\n*         contains the first components of all right singular vectors\n*         of the lower block. On exit, VF contains the first components\n*         of all right singular vectors of the bidiagonal matrix.\n*\n*  VFW    (workspace) REAL array, dimension ( M )\n*         Workspace for VF.\n*\n*  VL     (input/output) REAL array, dimension ( M )\n*         On entry, VL(1:NL+1) contains the  last components of all\n*         right singular vectors of the upper block; and VL(NL+2:M)\n*         contains the last components of all right singular vectors\n*         of the lower block. On exit, VL contains the last components\n*         of all right singular vectors of the bidiagonal matrix.\n*\n*  VLW    (workspace) REAL array, dimension ( M )\n*         Workspace for VL.\n*\n*  ALPHA  (input) REAL\n*         Contains the diagonal element associated with the added row.\n*\n*  BETA   (input) REAL\n*         Contains the off-diagonal element associated with the added\n*         row.\n*\n*  DSIGMA (output) REAL array, dimension ( N )\n*         Contains a copy of the diagonal elements (K-1 singular values\n*         and one zero) in the secular equation.\n*\n*  IDX    (workspace) INTEGER array, dimension ( N )\n*         This will contain the permutation used to sort the contents of\n*         D into ascending order.\n*\n*  IDXP   (workspace) INTEGER array, dimension ( N )\n*         This will contain the permutation used to place deflated\n*         values of D at the end of the array. On output IDXP(2:K)\n*         points to the nondeflated D-values and IDXP(K+1:N)\n*         points to the deflated singular values.\n*\n*  IDXQ   (input) INTEGER array, dimension ( N )\n*         This contains the permutation which separately sorts the two\n*         sub-problems in D into ascending order.  Note that entries in\n*         the first half of this permutation must first be moved one\n*         position backward; and entries in the second half\n*         must first have NL+1 added to their values.\n*\n*  PERM   (output) INTEGER array, dimension ( N )\n*         The permutations (from deflation and sorting) to be applied\n*         to each singular block. Not referenced if ICOMPQ = 0.\n*\n*  GIVPTR (output) INTEGER\n*         The number of Givens rotations which took place in this\n*         subproblem. Not referenced if ICOMPQ = 0.\n*\n*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 )\n*         Each pair of numbers indicates a pair of columns to take place\n*         in a Givens rotation. Not referenced if ICOMPQ = 0.\n*\n*  LDGCOL (input) INTEGER\n*         The leading dimension of GIVCOL, must be at least N.\n*\n*  GIVNUM (output) REAL array, dimension ( LDGNUM, 2 )\n*         Each number indicates the C or S value to be used in the\n*         corresponding Givens rotation. Not referenced if ICOMPQ = 0.\n*\n*  LDGNUM (input) INTEGER\n*         The leading dimension of GIVNUM, must be at least N.\n*\n*  C      (output) REAL\n*         C contains garbage if SQRE =0 and the C-value of a Givens\n*         rotation related to the right null space if SQRE = 1.\n*\n*  S      (output) REAL\n*         S contains garbage if SQRE =0 and the S-value of a Givens\n*         rotation related to the right null space if SQRE = 1.\n*\n*  INFO   (output) INTEGER\n*         = 0:  successful exit.\n*         < 0:  if INFO = -i, the i-th argument had an illegal value.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Ming Gu and Huan Ren, Computer Science Division, University of\n*     California at Berkeley, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  k, z, dsigma, perm, givptr, givcol, givnum, c, s, info, d, vf, vl = NumRu::Lapack.slasd7( icompq, nl, nr, sqre, d, vf, vl, alpha, beta, idxq, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 10 && argc != 10)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 10)", argc);
  rblapack_icompq = argv[0];
  rblapack_nl = argv[1];
  rblapack_nr = argv[2];
  rblapack_sqre = argv[3];
  rblapack_d = argv[4];
  rblapack_vf = argv[5];
  rblapack_vl = argv[6];
  rblapack_alpha = argv[7];
  rblapack_beta = argv[8];
  rblapack_idxq = argv[9];
  if (argc == 10) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  icompq = NUM2INT(rblapack_icompq);
  nr = NUM2INT(rblapack_nr);
  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (5th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (5th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_SFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
  d = NA_PTR_TYPE(rblapack_d, real*);
  if (!NA_IsNArray(rblapack_vl))
    rb_raise(rb_eArgError, "vl (7th argument) must be NArray");
  if (NA_RANK(rblapack_vl) != 1)
    rb_raise(rb_eArgError, "rank of vl (7th argument) must be %d", 1);
  m = NA_SHAPE0(rblapack_vl);
  if (NA_TYPE(rblapack_vl) != NA_SFLOAT)
    rblapack_vl = na_change_type(rblapack_vl, NA_SFLOAT);
  vl = NA_PTR_TYPE(rblapack_vl, real*);
  beta = (real)NUM2DBL(rblapack_beta);
  nl = NUM2INT(rblapack_nl);
  if (!NA_IsNArray(rblapack_vf))
    rb_raise(rb_eArgError, "vf (6th argument) must be NArray");
  if (NA_RANK(rblapack_vf) != 1)
    rb_raise(rb_eArgError, "rank of vf (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_vf) != m)
    rb_raise(rb_eRuntimeError, "shape 0 of vf must be the same as shape 0 of vl");
  if (NA_TYPE(rblapack_vf) != NA_SFLOAT)
    rblapack_vf = na_change_type(rblapack_vf, NA_SFLOAT);
  vf = NA_PTR_TYPE(rblapack_vf, real*);
  if (!NA_IsNArray(rblapack_idxq))
    rb_raise(rb_eArgError, "idxq (10th argument) must be NArray");
  if (NA_RANK(rblapack_idxq) != 1)
    rb_raise(rb_eArgError, "rank of idxq (10th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_idxq) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of idxq must be the same as shape 0 of d");
  if (NA_TYPE(rblapack_idxq) != NA_LINT)
    rblapack_idxq = na_change_type(rblapack_idxq, NA_LINT);
  idxq = NA_PTR_TYPE(rblapack_idxq, integer*);
  ldgcol = n;
  sqre = NUM2INT(rblapack_sqre);
  ldgnum = n;
  alpha = (real)NUM2DBL(rblapack_alpha);
  {
    na_shape_t shape[1];
    shape[0] = m;
    rblapack_z = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_dsigma = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  dsigma = NA_PTR_TYPE(rblapack_dsigma, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_perm = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  perm = NA_PTR_TYPE(rblapack_perm, integer*);
  {
    na_shape_t shape[2];
    shape[0] = ldgcol;
    shape[1] = 2;
    rblapack_givcol = na_make_object(NA_LINT, 2, shape, cNArray);
  }
  givcol = NA_PTR_TYPE(rblapack_givcol, integer*);
  {
    na_shape_t shape[2];
    shape[0] = ldgnum;
    shape[1] = 2;
    rblapack_givnum = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  givnum = NA_PTR_TYPE(rblapack_givnum, real*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_d_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  d_out__ = NA_PTR_TYPE(rblapack_d_out__, real*);
  MEMCPY(d_out__, d, real, NA_TOTAL(rblapack_d));
  rblapack_d = rblapack_d_out__;
  d = d_out__;
  {
    na_shape_t shape[1];
    shape[0] = m;
    rblapack_vf_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  vf_out__ = NA_PTR_TYPE(rblapack_vf_out__, real*);
  MEMCPY(vf_out__, vf, real, NA_TOTAL(rblapack_vf));
  rblapack_vf = rblapack_vf_out__;
  vf = vf_out__;
  {
    na_shape_t shape[1];
    shape[0] = m;
    rblapack_vl_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  vl_out__ = NA_PTR_TYPE(rblapack_vl_out__, real*);
  MEMCPY(vl_out__, vl, real, NA_TOTAL(rblapack_vl));
  rblapack_vl = rblapack_vl_out__;
  vl = vl_out__;
  zw = ALLOC_N(real, (m));
  vfw = ALLOC_N(real, (m));
  vlw = ALLOC_N(real, (m));
  idx = ALLOC_N(integer, (n));
  idxp = ALLOC_N(integer, (n));

  slasd7_(&icompq, &nl, &nr, &sqre, &k, d, z, zw, vf, vfw, vl, vlw, &alpha, &beta, dsigma, idx, idxp, idxq, perm, &givptr, givcol, &ldgcol, givnum, &ldgnum, &c, &s, &info);

  free(zw);
  free(vfw);
  free(vlw);
  free(idx);
  free(idxp);
  rblapack_k = INT2NUM(k);
  rblapack_givptr = INT2NUM(givptr);
  rblapack_c = rb_float_new((double)c);
  rblapack_s = rb_float_new((double)s);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(13, rblapack_k, rblapack_z, rblapack_dsigma, rblapack_perm, rblapack_givptr, rblapack_givcol, rblapack_givnum, rblapack_c, rblapack_s, rblapack_info, rblapack_d, rblapack_vf, rblapack_vl);
}

void
init_lapack_slasd7(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "slasd7", rblapack_slasd7, -1);
}