1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
#include "rb_lapack.h"
extern VOID spbrfs_(char* uplo, integer* n, integer* kd, integer* nrhs, real* ab, integer* ldab, real* afb, integer* ldafb, real* b, integer* ldb, real* x, integer* ldx, real* ferr, real* berr, real* work, integer* iwork, integer* info);
static VALUE
rblapack_spbrfs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_kd;
integer kd;
VALUE rblapack_ab;
real *ab;
VALUE rblapack_afb;
real *afb;
VALUE rblapack_b;
real *b;
VALUE rblapack_x;
real *x;
VALUE rblapack_ferr;
real *ferr;
VALUE rblapack_berr;
real *berr;
VALUE rblapack_info;
integer info;
VALUE rblapack_x_out__;
real *x_out__;
real *work;
integer *iwork;
integer ldab;
integer n;
integer ldafb;
integer ldb;
integer nrhs;
integer ldx;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.spbrfs( uplo, kd, ab, afb, b, x, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* SPBRFS improves the computed solution to a system of linear\n* equations when the coefficient matrix is symmetric positive definite\n* and banded, and provides error bounds and backward error estimates\n* for the solution.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* KD (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrices B and X. NRHS >= 0.\n*\n* AB (input) REAL array, dimension (LDAB,N)\n* The upper or lower triangle of the symmetric band matrix A,\n* stored in the first KD+1 rows of the array. The j-th column\n* of A is stored in the j-th column of the array AB as follows:\n* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KD+1.\n*\n* AFB (input) REAL array, dimension (LDAFB,N)\n* The triangular factor U or L from the Cholesky factorization\n* A = U**T*U or A = L*L**T of the band matrix A as computed by\n* SPBTRF, in the same storage format as A (see AB).\n*\n* LDAFB (input) INTEGER\n* The leading dimension of the array AFB. LDAFB >= KD+1.\n*\n* B (input) REAL array, dimension (LDB,NRHS)\n* The right hand side matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* X (input/output) REAL array, dimension (LDX,NRHS)\n* On entry, the solution matrix X, as computed by SPBTRS.\n* On exit, the improved solution matrix X.\n*\n* LDX (input) INTEGER\n* The leading dimension of the array X. LDX >= max(1,N).\n*\n* FERR (output) REAL array, dimension (NRHS)\n* The estimated forward error bound for each solution vector\n* X(j) (the j-th column of the solution matrix X).\n* If XTRUE is the true solution corresponding to X(j), FERR(j)\n* is an estimated upper bound for the magnitude of the largest\n* element in (X(j) - XTRUE) divided by the magnitude of the\n* largest element in X(j). The estimate is as reliable as\n* the estimate for RCOND, and is almost always a slight\n* overestimate of the true error.\n*\n* BERR (output) REAL array, dimension (NRHS)\n* The componentwise relative backward error of each solution\n* vector X(j) (i.e., the smallest relative change in\n* any element of A or B that makes X(j) an exact solution).\n*\n* WORK (workspace) REAL array, dimension (3*N)\n*\n* IWORK (workspace) INTEGER array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n* Internal Parameters\n* ===================\n*\n* ITMAX is the maximum number of steps of iterative refinement.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n ferr, berr, info, x = NumRu::Lapack.spbrfs( uplo, kd, ab, afb, b, x, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_uplo = argv[0];
rblapack_kd = argv[1];
rblapack_ab = argv[2];
rblapack_afb = argv[3];
rblapack_b = argv[4];
rblapack_x = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (3th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (3th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
ab = NA_PTR_TYPE(rblapack_ab, real*);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_SFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
b = NA_PTR_TYPE(rblapack_b, real*);
kd = NUM2INT(rblapack_kd);
if (!NA_IsNArray(rblapack_x))
rb_raise(rb_eArgError, "x (6th argument) must be NArray");
if (NA_RANK(rblapack_x) != 2)
rb_raise(rb_eArgError, "rank of x (6th argument) must be %d", 2);
ldx = NA_SHAPE0(rblapack_x);
if (NA_SHAPE1(rblapack_x) != nrhs)
rb_raise(rb_eRuntimeError, "shape 1 of x must be the same as shape 1 of b");
if (NA_TYPE(rblapack_x) != NA_SFLOAT)
rblapack_x = na_change_type(rblapack_x, NA_SFLOAT);
x = NA_PTR_TYPE(rblapack_x, real*);
if (!NA_IsNArray(rblapack_afb))
rb_raise(rb_eArgError, "afb (4th argument) must be NArray");
if (NA_RANK(rblapack_afb) != 2)
rb_raise(rb_eArgError, "rank of afb (4th argument) must be %d", 2);
ldafb = NA_SHAPE0(rblapack_afb);
if (NA_SHAPE1(rblapack_afb) != n)
rb_raise(rb_eRuntimeError, "shape 1 of afb must be the same as shape 1 of ab");
if (NA_TYPE(rblapack_afb) != NA_SFLOAT)
rblapack_afb = na_change_type(rblapack_afb, NA_SFLOAT);
afb = NA_PTR_TYPE(rblapack_afb, real*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_ferr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
ferr = NA_PTR_TYPE(rblapack_ferr, real*);
{
na_shape_t shape[1];
shape[0] = nrhs;
rblapack_berr = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
berr = NA_PTR_TYPE(rblapack_berr, real*);
{
na_shape_t shape[2];
shape[0] = ldx;
shape[1] = nrhs;
rblapack_x_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
x_out__ = NA_PTR_TYPE(rblapack_x_out__, real*);
MEMCPY(x_out__, x, real, NA_TOTAL(rblapack_x));
rblapack_x = rblapack_x_out__;
x = x_out__;
work = ALLOC_N(real, (3*n));
iwork = ALLOC_N(integer, (n));
spbrfs_(&uplo, &n, &kd, &nrhs, ab, &ldab, afb, &ldafb, b, &ldb, x, &ldx, ferr, berr, work, iwork, &info);
free(work);
free(iwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(4, rblapack_ferr, rblapack_berr, rblapack_info, rblapack_x);
}
void
init_lapack_spbrfs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "spbrfs", rblapack_spbrfs, -1);
}
|