File: spttrs.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (97 lines) | stat: -rw-r--r-- 5,050 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include "rb_lapack.h"

extern VOID spttrs_(integer* n, integer* nrhs, real* d, real* e, real* b, integer* ldb, integer* info);


static VALUE
rblapack_spttrs(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_d;
  real *d; 
  VALUE rblapack_e;
  real *e; 
  VALUE rblapack_b;
  real *b; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_b_out__;
  real *b_out__;

  integer n;
  integer ldb;
  integer nrhs;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.spttrs( d, e, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SPTTRS( N, NRHS, D, E, B, LDB, INFO )\n\n*  Purpose\n*  =======\n*\n*  SPTTRS solves a tridiagonal system of the form\n*     A * X = B\n*  using the L*D*L' factorization of A computed by SPTTRF.  D is a\n*  diagonal matrix specified in the vector D, L is a unit bidiagonal\n*  matrix whose subdiagonal is specified in the vector E, and X and B\n*  are N by NRHS matrices.\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The order of the tridiagonal matrix A.  N >= 0.\n*\n*  NRHS    (input) INTEGER\n*          The number of right hand sides, i.e., the number of columns\n*          of the matrix B.  NRHS >= 0.\n*\n*  D       (input) REAL array, dimension (N)\n*          The n diagonal elements of the diagonal matrix D from the\n*          L*D*L' factorization of A.\n*\n*  E       (input) REAL array, dimension (N-1)\n*          The (n-1) subdiagonal elements of the unit bidiagonal factor\n*          L from the L*D*L' factorization of A.  E can also be regarded\n*          as the superdiagonal of the unit bidiagonal factor U from the\n*          factorization A = U'*D*U.\n*\n*  B       (input/output) REAL array, dimension (LDB,NRHS)\n*          On entry, the right hand side vectors B for the system of\n*          linear equations.\n*          On exit, the solution vectors, X.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B.  LDB >= max(1,N).\n*\n*  INFO    (output) INTEGER\n*          = 0: successful exit\n*          < 0: if INFO = -k, the k-th argument had an illegal value\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      INTEGER            J, JB, NB\n*     ..\n*     .. External Functions ..\n      INTEGER            ILAENV\n      EXTERNAL           ILAENV\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           SPTTS2, XERBLA\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, b = NumRu::Lapack.spttrs( d, e, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_d = argv[0];
  rblapack_e = argv[1];
  rblapack_b = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  if (!NA_IsNArray(rblapack_d))
    rb_raise(rb_eArgError, "d (1th argument) must be NArray");
  if (NA_RANK(rblapack_d) != 1)
    rb_raise(rb_eArgError, "rank of d (1th argument) must be %d", 1);
  n = NA_SHAPE0(rblapack_d);
  if (NA_TYPE(rblapack_d) != NA_SFLOAT)
    rblapack_d = na_change_type(rblapack_d, NA_SFLOAT);
  d = NA_PTR_TYPE(rblapack_d, real*);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (3th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (3th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  nrhs = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_SFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
  b = NA_PTR_TYPE(rblapack_b, real*);
  if (!NA_IsNArray(rblapack_e))
    rb_raise(rb_eArgError, "e (2th argument) must be NArray");
  if (NA_RANK(rblapack_e) != 1)
    rb_raise(rb_eArgError, "rank of e (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_e) != (n-1))
    rb_raise(rb_eRuntimeError, "shape 0 of e must be %d", n-1);
  if (NA_TYPE(rblapack_e) != NA_SFLOAT)
    rblapack_e = na_change_type(rblapack_e, NA_SFLOAT);
  e = NA_PTR_TYPE(rblapack_e, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = nrhs;
    rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
  MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;

  spttrs_(&n, &nrhs, d, e, b, &ldb, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(2, rblapack_info, rblapack_b);
}

void
init_lapack_spttrs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "spttrs", rblapack_spttrs, -1);
}