File: ssbgvd.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (170 lines) | stat: -rw-r--r-- 11,218 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include "rb_lapack.h"

extern VOID ssbgvd_(char* jobz, char* uplo, integer* n, integer* ka, integer* kb, real* ab, integer* ldab, real* bb, integer* ldbb, real* w, real* z, integer* ldz, real* work, integer* lwork, integer* iwork, integer* liwork, integer* info);


static VALUE
rblapack_ssbgvd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_ka;
  integer ka; 
  VALUE rblapack_kb;
  integer kb; 
  VALUE rblapack_ab;
  real *ab; 
  VALUE rblapack_bb;
  real *bb; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_liwork;
  integer liwork; 
  VALUE rblapack_w;
  real *w; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_work;
  real *work; 
  VALUE rblapack_iwork;
  integer *iwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_ab_out__;
  real *ab_out__;
  VALUE rblapack_bb_out__;
  real *bb_out__;

  integer ldab;
  integer n;
  integer ldbb;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, work, iwork, info, ab, bb = NumRu::Lapack.ssbgvd( jobz, uplo, ka, kb, ab, bb, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE SSBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  SSBGVD computes all the eigenvalues, and optionally, the eigenvectors\n*  of a real generalized symmetric-definite banded eigenproblem, of the\n*  form A*x=(lambda)*B*x.  Here A and B are assumed to be symmetric and\n*  banded, and B is also positive definite.  If eigenvectors are\n*  desired, it uses a divide and conquer algorithm.\n*\n*  The divide and conquer algorithm makes very mild assumptions about\n*  floating point arithmetic. It will work on machines with a guard\n*  digit in add/subtract, or on those binary machines without guard\n*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n*  Cray-2. It could conceivably fail on hexadecimal or decimal machines\n*  without guard digits, but we know of none.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangles of A and B are stored;\n*          = 'L':  Lower triangles of A and B are stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B.  N >= 0.\n*\n*  KA      (input) INTEGER\n*          The number of superdiagonals of the matrix A if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KA >= 0.\n*\n*  KB      (input) INTEGER\n*          The number of superdiagonals of the matrix B if UPLO = 'U',\n*          or the number of subdiagonals if UPLO = 'L'.  KB >= 0.\n*\n*  AB      (input/output) REAL array, dimension (LDAB, N)\n*          On entry, the upper or lower triangle of the symmetric band\n*          matrix A, stored in the first ka+1 rows of the array.  The\n*          j-th column of A is stored in the j-th column of the array AB\n*          as follows:\n*          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).\n*\n*          On exit, the contents of AB are destroyed.\n*\n*  LDAB    (input) INTEGER\n*          The leading dimension of the array AB.  LDAB >= KA+1.\n*\n*  BB      (input/output) REAL array, dimension (LDBB, N)\n*          On entry, the upper or lower triangle of the symmetric band\n*          matrix B, stored in the first kb+1 rows of the array.  The\n*          j-th column of B is stored in the j-th column of the array BB\n*          as follows:\n*          if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;\n*          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).\n*\n*          On exit, the factor S from the split Cholesky factorization\n*          B = S**T*S, as returned by SPBSTF.\n*\n*  LDBB    (input) INTEGER\n*          The leading dimension of the array BB.  LDBB >= KB+1.\n*\n*  W       (output) REAL array, dimension (N)\n*          If INFO = 0, the eigenvalues in ascending order.\n*\n*  Z       (output) REAL array, dimension (LDZ, N)\n*          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n*          eigenvectors, with the i-th column of Z holding the\n*          eigenvector associated with W(i).  The eigenvectors are\n*          normalized so Z**T*B*Z = I.\n*          If JOBZ = 'N', then Z is not referenced.\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z.  LDZ >= 1, and if\n*          JOBZ = 'V', LDZ >= max(1,N).\n*\n*  WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.\n*          If N <= 1,               LWORK >= 1.\n*          If JOBZ = 'N' and N > 1, LWORK >= 3*N.\n*          If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal sizes of the WORK and IWORK\n*          arrays, returns these values as the first entries of the WORK\n*          and IWORK arrays, and no error message related to LWORK or\n*          LIWORK is issued by XERBLA.\n*\n*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n*          On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.\n*\n*  LIWORK  (input) INTEGER\n*          The dimension of the array IWORK.\n*          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.\n*          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.\n*\n*          If LIWORK = -1, then a workspace query is assumed; the\n*          routine only calculates the optimal sizes of the WORK and\n*          IWORK arrays, returns these values as the first entries of\n*          the WORK and IWORK arrays, and no error message related to\n*          LWORK or LIWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, and i is:\n*             <= N:  the algorithm failed to converge:\n*                    i off-diagonal elements of an intermediate\n*                    tridiagonal form did not converge to zero;\n*             > N:   if INFO = N + i, for 1 <= i <= N, then SPBSTF\n*                    returned INFO = i: B is not positive definite.\n*                    The factorization of B could not be completed and\n*                    no eigenvalues or eigenvectors were computed.\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, z, work, iwork, info, ab, bb = NumRu::Lapack.ssbgvd( jobz, uplo, ka, kb, ab, bb, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 6 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
  rblapack_jobz = argv[0];
  rblapack_uplo = argv[1];
  rblapack_ka = argv[2];
  rblapack_kb = argv[3];
  rblapack_ab = argv[4];
  rblapack_bb = argv[5];
  if (argc == 8) {
    rblapack_lwork = argv[6];
    rblapack_liwork = argv[7];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
    rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
  } else {
    rblapack_lwork = Qnil;
    rblapack_liwork = Qnil;
  }

  jobz = StringValueCStr(rblapack_jobz)[0];
  ka = NUM2INT(rblapack_ka);
  if (!NA_IsNArray(rblapack_ab))
    rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
  if (NA_RANK(rblapack_ab) != 2)
    rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
  ldab = NA_SHAPE0(rblapack_ab);
  n = NA_SHAPE1(rblapack_ab);
  if (NA_TYPE(rblapack_ab) != NA_SFLOAT)
    rblapack_ab = na_change_type(rblapack_ab, NA_SFLOAT);
  ab = NA_PTR_TYPE(rblapack_ab, real*);
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (!NA_IsNArray(rblapack_bb))
    rb_raise(rb_eArgError, "bb (6th argument) must be NArray");
  if (NA_RANK(rblapack_bb) != 2)
    rb_raise(rb_eArgError, "rank of bb (6th argument) must be %d", 2);
  ldbb = NA_SHAPE0(rblapack_bb);
  if (NA_SHAPE1(rblapack_bb) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of bb must be the same as shape 1 of ab");
  if (NA_TYPE(rblapack_bb) != NA_SFLOAT)
    rblapack_bb = na_change_type(rblapack_bb, NA_SFLOAT);
  bb = NA_PTR_TYPE(rblapack_bb, real*);
  if (rblapack_liwork == Qnil)
    liwork = (lsame_(&jobz,"N")||n<=0) ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
  else {
    liwork = NUM2INT(rblapack_liwork);
  }
  kb = NUM2INT(rblapack_kb);
  ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
  if (rblapack_lwork == Qnil)
    lwork = n<=1 ? 1 : lsame_(&jobz,"N") ? 3*n : lsame_(&jobz,"V") ? 1+5*n+2*n*n : 0;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, real*);
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_z = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  z = NA_PTR_TYPE(rblapack_z, real*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, real*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,liwork);
    rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
  {
    na_shape_t shape[2];
    shape[0] = ldab;
    shape[1] = n;
    rblapack_ab_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, real*);
  MEMCPY(ab_out__, ab, real, NA_TOTAL(rblapack_ab));
  rblapack_ab = rblapack_ab_out__;
  ab = ab_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldbb;
    shape[1] = n;
    rblapack_bb_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  bb_out__ = NA_PTR_TYPE(rblapack_bb_out__, real*);
  MEMCPY(bb_out__, bb, real, NA_TOTAL(rblapack_bb));
  rblapack_bb = rblapack_bb_out__;
  bb = bb_out__;

  ssbgvd_(&jobz, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb, w, z, &ldz, work, &lwork, iwork, &liwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_w, rblapack_z, rblapack_work, rblapack_iwork, rblapack_info, rblapack_ab, rblapack_bb);
}

void
init_lapack_ssbgvd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "ssbgvd", rblapack_ssbgvd, -1);
}