1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
#include "rb_lapack.h"
extern VOID ssyevd_(char* jobz, char* uplo, integer* n, real* a, integer* lda, real* w, real* work, integer* lwork, integer* iwork, integer* liwork, integer* info);
static VALUE
rblapack_ssyevd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
real *a;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_w;
real *w;
VALUE rblapack_work;
real *work;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, work, iwork, info, a = NumRu::Lapack.ssyevd( jobz, uplo, a, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* SSYEVD computes all eigenvalues and, optionally, eigenvectors of a\n* real symmetric matrix A. If eigenvectors are desired, it uses a\n* divide and conquer algorithm.\n*\n* The divide and conquer algorithm makes very mild assumptions about\n* floating point arithmetic. It will work on machines with a guard\n* digit in add/subtract, or on those binary machines without guard\n* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n* Because of large use of BLAS of level 3, SSYEVD needs N**2 more\n* workspace than SSYEVX.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA, N)\n* On entry, the symmetric matrix A. If UPLO = 'U', the\n* leading N-by-N upper triangular part of A contains the\n* upper triangular part of the matrix A. If UPLO = 'L',\n* the leading N-by-N lower triangular part of A contains\n* the lower triangular part of the matrix A.\n* On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n* orthonormal eigenvectors of the matrix A.\n* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')\n* or the upper triangle (if UPLO='U') of A, including the\n* diagonal, is destroyed.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* W (output) REAL array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* WORK (workspace/output) REAL array,\n* dimension (LWORK)\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* If N <= 1, LWORK must be at least 1.\n* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.\n* If JOBZ = 'V' and N > 1, LWORK must be at least \n* 1 + 6*N + 2*N**2.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal sizes of the WORK and IWORK\n* arrays, returns these values as the first entries of the WORK\n* and IWORK arrays, and no error message related to LWORK or\n* LIWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of the array IWORK.\n* If N <= 1, LIWORK must be at least 1.\n* If JOBZ = 'N' and N > 1, LIWORK must be at least 1.\n* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the optimal sizes of the WORK and\n* IWORK arrays, returns these values as the first entries of\n* the WORK and IWORK arrays, and no error message related to\n* LWORK or LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i and JOBZ = 'N', then the algorithm failed\n* to converge; i off-diagonal elements of an intermediate\n* tridiagonal form did not converge to zero;\n* if INFO = i and JOBZ = 'V', then the algorithm failed\n* to compute an eigenvalue while working on the submatrix\n* lying in rows and columns INFO/(N+1) through\n* mod(INFO,N+1).\n*\n\n* Further Details\n* ===============\n*\n* Based on contributions by\n* Jeff Rutter, Computer Science Division, University of California\n* at Berkeley, USA\n* Modified by Francoise Tisseur, University of Tennessee.\n*\n* Modified description of INFO. Sven, 16 Feb 05.\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, work, iwork, info, a = NumRu::Lapack.ssyevd( jobz, uplo, a, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_jobz = argv[0];
rblapack_uplo = argv[1];
rblapack_a = argv[2];
if (argc == 5) {
rblapack_lwork = argv[3];
rblapack_liwork = argv[4];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
} else {
rblapack_lwork = Qnil;
rblapack_liwork = Qnil;
}
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (3th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
if (rblapack_liwork == Qnil)
liwork = n<=1 ? 1 : lsame_(&jobz,"N") ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
else {
liwork = NUM2INT(rblapack_liwork);
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (rblapack_lwork == Qnil)
lwork = n<=1 ? 1 : lsame_(&jobz,"N") ? 2*n+1 : lsame_(&jobz,"V") ? 1+6*n+2*n*n : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, real*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
ssyevd_(&jobz, &uplo, &n, a, &lda, w, work, &lwork, iwork, &liwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_w, rblapack_work, rblapack_iwork, rblapack_info, rblapack_a);
}
void
init_lapack_ssyevd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ssyevd", rblapack_ssyevd, -1);
}
|