1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
#include "rb_lapack.h"
extern VOID ssytri2_(char* uplo, integer* n, real* a, integer* lda, integer* ipiv, real* work, integer* lwork, integer* info);
static VALUE
rblapack_ssytri2(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_a;
real *a;
VALUE rblapack_ipiv;
integer *ipiv;
VALUE rblapack_work;
real *work;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
real *a_out__;
VALUE rblapack_work_out__;
real *work_out__;
integer c__1;
integer c__m1;
integer nb;
integer lda;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, work = NumRu::Lapack.ssytri2( uplo, a, ipiv, work, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SSYTRI2 computes the inverse of a real symmetric indefinite matrix\n* A using the factorization A = U*D*U**T or A = L*D*L**T computed by\n* SSYTRF. SSYTRI2 sets the LEADING DIMENSION of the workspace\n* before calling SSYTRI2X that actually computes the inverse.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* Specifies whether the details of the factorization are stored\n* as an upper or lower triangular matrix.\n* = 'U': Upper triangular, form is A = U*D*U**T;\n* = 'L': Lower triangular, form is A = L*D*L**T.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the NB diagonal matrix D and the multipliers\n* used to obtain the factor U or L as computed by SSYTRF.\n*\n* On exit, if INFO = 0, the (symmetric) inverse of the original\n* matrix. If UPLO = 'U', the upper triangular part of the\n* inverse is formed and the part of A below the diagonal is not\n* referenced; if UPLO = 'L' the lower triangular part of the\n* inverse is formed and the part of A above the diagonal is\n* not referenced.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* IPIV (input) INTEGER array, dimension (N)\n* Details of the interchanges and the NB structure of D\n* as determined by SSYTRF.\n*\n* WORK (workspace) REAL array, dimension (N+NB+1)*(NB+3)\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* WORK is size >= (N+NB+1)*(NB+3)\n* If LDWORK = -1, then a workspace query is assumed; the routine\n* calculates:\n* - the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array,\n* - and no error message related to LDWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its\n* inverse could not be computed.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL UPPER, LQUERY\n INTEGER MINSIZE, NBMAX\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n INTEGER ILAENV\n EXTERNAL LSAME, ILAENV\n* ..\n* .. External Subroutines ..\n EXTERNAL SSYTRI2X\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, a, work = NumRu::Lapack.ssytri2( uplo, a, ipiv, work, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 4 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
rblapack_uplo = argv[0];
rblapack_a = argv[1];
rblapack_ipiv = argv[2];
rblapack_work = argv[3];
if (argc == 5) {
rblapack_lwork = argv[4];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_ipiv))
rb_raise(rb_eArgError, "ipiv (3th argument) must be NArray");
if (NA_RANK(rblapack_ipiv) != 1)
rb_raise(rb_eArgError, "rank of ipiv (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_ipiv);
if (NA_TYPE(rblapack_ipiv) != NA_LINT)
rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
c__1 = 1;
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 0 of ipiv");
if (NA_TYPE(rblapack_a) != NA_SFLOAT)
rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
a = NA_PTR_TYPE(rblapack_a, real*);
c__m1 = -1;
if (!NA_IsNArray(rblapack_work))
rb_raise(rb_eArgError, "work (4th argument) must be NArray");
if (NA_RANK(rblapack_work) != 1)
rb_raise(rb_eArgError, "rank of work (4th argument) must be %d", 1);
lwork = NA_SHAPE0(rblapack_work);
if (NA_TYPE(rblapack_work) != NA_SFLOAT)
rblapack_work = na_change_type(rblapack_work, NA_SFLOAT);
work = NA_PTR_TYPE(rblapack_work, real*);
nb = ilaenv_(&c__1, "SSYTRF", &uplo, &n, &c__m1, &c__m1, &c__m1);
if (rblapack_lwork == Qnil)
lwork = (n+nb+1)*(nb+3);
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[1];
shape[0] = lwork;
rblapack_work_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
}
work_out__ = NA_PTR_TYPE(rblapack_work_out__, real*);
MEMCPY(work_out__, work, real, NA_TOTAL(rblapack_work));
rblapack_work = rblapack_work_out__;
work = work_out__;
ssytri2_(&uplo, &n, a, &lda, ipiv, work, &lwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(3, rblapack_info, rblapack_a, rblapack_work);
}
void
init_lapack_ssytri2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ssytri2", rblapack_ssytri2, -1);
}
|