File: stgex2.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (184 lines) | stat: -rw-r--r-- 10,642 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include "rb_lapack.h"

extern VOID stgex2_(logical* wantq, logical* wantz, integer* n, real* a, integer* lda, real* b, integer* ldb, real* q, integer* ldq, real* z, integer* ldz, integer* j1, integer* n1, integer* n2, real* work, integer* lwork, integer* info);


static VALUE
rblapack_stgex2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_wantq;
  logical wantq; 
  VALUE rblapack_wantz;
  logical wantz; 
  VALUE rblapack_a;
  real *a; 
  VALUE rblapack_b;
  real *b; 
  VALUE rblapack_q;
  real *q; 
  VALUE rblapack_ldq;
  integer ldq; 
  VALUE rblapack_z;
  real *z; 
  VALUE rblapack_j1;
  integer j1; 
  VALUE rblapack_n1;
  integer n1; 
  VALUE rblapack_n2;
  integer n2; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  real *a_out__;
  VALUE rblapack_b_out__;
  real *b_out__;
  VALUE rblapack_q_out__;
  real *q_out__;
  VALUE rblapack_z_out__;
  real *z_out__;
  real *work;

  integer lda;
  integer n;
  integer ldb;
  integer ldz;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a, b, q, z = NumRu::Lapack.stgex2( wantq, wantz, a, b, q, ldq, z, j1, n1, n2, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, N1, N2, WORK, LWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)\n*  of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair\n*  (A, B) by an orthogonal equivalence transformation.\n*\n*  (A, B) must be in generalized real Schur canonical form (as returned\n*  by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2\n*  diagonal blocks. B is upper triangular.\n*\n*  Optionally, the matrices Q and Z of generalized Schur vectors are\n*  updated.\n*\n*         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'\n*         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'\n*\n*\n\n*  Arguments\n*  =========\n*\n*  WANTQ   (input) LOGICAL\n*          .TRUE. : update the left transformation matrix Q;\n*          .FALSE.: do not update Q.\n*\n*  WANTZ   (input) LOGICAL\n*          .TRUE. : update the right transformation matrix Z;\n*          .FALSE.: do not update Z.\n*\n*  N       (input) INTEGER\n*          The order of the matrices A and B. N >= 0.\n*\n*  A      (input/output) REAL arrays, dimensions (LDA,N)\n*          On entry, the matrix A in the pair (A, B).\n*          On exit, the updated matrix A.\n*\n*  LDA     (input)  INTEGER\n*          The leading dimension of the array A. LDA >= max(1,N).\n*\n*  B      (input/output) REAL arrays, dimensions (LDB,N)\n*          On entry, the matrix B in the pair (A, B).\n*          On exit, the updated matrix B.\n*\n*  LDB     (input)  INTEGER\n*          The leading dimension of the array B. LDB >= max(1,N).\n*\n*  Q       (input/output) REAL array, dimension (LDZ,N)\n*          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.\n*          On exit, the updated matrix Q.\n*          Not referenced if WANTQ = .FALSE..\n*\n*  LDQ     (input) INTEGER\n*          The leading dimension of the array Q. LDQ >= 1.\n*          If WANTQ = .TRUE., LDQ >= N.\n*\n*  Z       (input/output) REAL array, dimension (LDZ,N)\n*          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.\n*          On exit, the updated matrix Z.\n*          Not referenced if WANTZ = .FALSE..\n*\n*  LDZ     (input) INTEGER\n*          The leading dimension of the array Z. LDZ >= 1.\n*          If WANTZ = .TRUE., LDZ >= N.\n*\n*  J1      (input) INTEGER\n*          The index to the first block (A11, B11). 1 <= J1 <= N.\n*\n*  N1      (input) INTEGER\n*          The order of the first block (A11, B11). N1 = 0, 1 or 2.\n*\n*  N2      (input) INTEGER\n*          The order of the second block (A22, B22). N2 = 0, 1 or 2.\n*\n*  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)).\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.\n*          LWORK >=  MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 )\n*\n*  INFO    (output) INTEGER\n*            =0: Successful exit\n*            >0: If INFO = 1, the transformed matrix (A, B) would be\n*                too far from generalized Schur form; the blocks are\n*                not swapped and (A, B) and (Q, Z) are unchanged.\n*                The problem of swapping is too ill-conditioned.\n*            <0: If INFO = -16: LWORK is too small. Appropriate value\n*                for LWORK is returned in WORK(1).\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,\n*     Umea University, S-901 87 Umea, Sweden.\n*\n*  In the current code both weak and strong stability tests are\n*  performed. The user can omit the strong stability test by changing\n*  the internal logical parameter WANDS to .FALSE.. See ref. [2] for\n*  details.\n*\n*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the\n*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in\n*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and\n*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.\n*\n*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified\n*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition\n*      Estimation: Theory, Algorithms and Software,\n*      Report UMINF - 94.04, Department of Computing Science, Umea\n*      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working\n*      Note 87. To appear in Numerical Algorithms, 1996.\n*\n*  =====================================================================\n*  Replaced various illegal calls to SCOPY by calls to SLASET, or by DO\n*  loops. Sven Hammarling, 1/5/02.\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, a, b, q, z = NumRu::Lapack.stgex2( wantq, wantz, a, b, q, ldq, z, j1, n1, n2, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 10 && argc != 11)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 10)", argc);
  rblapack_wantq = argv[0];
  rblapack_wantz = argv[1];
  rblapack_a = argv[2];
  rblapack_b = argv[3];
  rblapack_q = argv[4];
  rblapack_ldq = argv[5];
  rblapack_z = argv[6];
  rblapack_j1 = argv[7];
  rblapack_n1 = argv[8];
  rblapack_n2 = argv[9];
  if (argc == 11) {
    rblapack_lwork = argv[10];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  wantq = (rblapack_wantq == Qtrue);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_SFLOAT)
    rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
  a = NA_PTR_TYPE(rblapack_a, real*);
  if (!NA_IsNArray(rblapack_q))
    rb_raise(rb_eArgError, "q (5th argument) must be NArray");
  if (NA_RANK(rblapack_q) != 2)
    rb_raise(rb_eArgError, "rank of q (5th argument) must be %d", 2);
  ldz = NA_SHAPE0(rblapack_q);
  if (NA_SHAPE1(rblapack_q) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of q must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_q) != NA_SFLOAT)
    rblapack_q = na_change_type(rblapack_q, NA_SFLOAT);
  q = NA_PTR_TYPE(rblapack_q, real*);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (7th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 2)
    rb_raise(rb_eArgError, "rank of z (7th argument) must be %d", 2);
  if (NA_SHAPE0(rblapack_z) != ldz)
    rb_raise(rb_eRuntimeError, "shape 0 of z must be the same as shape 0 of q");
  if (NA_SHAPE1(rblapack_z) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of z must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_z) != NA_SFLOAT)
    rblapack_z = na_change_type(rblapack_z, NA_SFLOAT);
  z = NA_PTR_TYPE(rblapack_z, real*);
  n1 = NUM2INT(rblapack_n1);
  wantz = (rblapack_wantz == Qtrue);
  ldq = NUM2INT(rblapack_ldq);
  n2 = NUM2INT(rblapack_n2);
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_b) != NA_SFLOAT)
    rblapack_b = na_change_type(rblapack_b, NA_SFLOAT);
  b = NA_PTR_TYPE(rblapack_b, real*);
  lwork = MAX(1,(MAX(n*(n2+n1),(n2+n1)*(n2+n1)*2)));
  j1 = NUM2INT(rblapack_j1);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
  MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, real*);
  MEMCPY(b_out__, b, real, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_q_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  q_out__ = NA_PTR_TYPE(rblapack_q_out__, real*);
  MEMCPY(q_out__, q, real, NA_TOTAL(rblapack_q));
  rblapack_q = rblapack_q_out__;
  q = q_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldz;
    shape[1] = n;
    rblapack_z_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
  }
  z_out__ = NA_PTR_TYPE(rblapack_z_out__, real*);
  MEMCPY(z_out__, z, real, NA_TOTAL(rblapack_z));
  rblapack_z = rblapack_z_out__;
  z = z_out__;
  work = ALLOC_N(real, (lwork));

  stgex2_(&wantq, &wantz, &n, a, &lda, b, &ldb, q, &ldq, z, &ldz, &j1, &n1, &n2, work, &lwork, &info);

  free(work);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(5, rblapack_info, rblapack_a, rblapack_b, rblapack_q, rblapack_z);
}

void
init_lapack_stgex2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "stgex2", rblapack_stgex2, -1);
}