File: zgegs.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (166 lines) | stat: -rw-r--r-- 10,756 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include "rb_lapack.h"

extern VOID zgegs_(char* jobvsl, char* jobvsr, integer* n, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublecomplex* alpha, doublecomplex* beta, doublecomplex* vsl, integer* ldvsl, doublecomplex* vsr, integer* ldvsr, doublecomplex* work, integer* lwork, doublereal* rwork, integer* info);


static VALUE
rblapack_zgegs(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobvsl;
  char jobvsl; 
  VALUE rblapack_jobvsr;
  char jobvsr; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_alpha;
  doublecomplex *alpha; 
  VALUE rblapack_beta;
  doublecomplex *beta; 
  VALUE rblapack_vsl;
  doublecomplex *vsl; 
  VALUE rblapack_vsr;
  doublecomplex *vsr; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;
  doublereal *rwork;

  integer lda;
  integer n;
  integer ldb;
  integer ldvsl;
  integer ldvsr;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  alpha, beta, vsl, vsr, work, info, a, b = NumRu::Lapack.zgegs( jobvsl, jobvsr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  This routine is deprecated and has been replaced by routine ZGGES.\n*\n*  ZGEGS computes the eigenvalues, Schur form, and, optionally, the\n*  left and or/right Schur vectors of a complex matrix pair (A,B).\n*  Given two square matrices A and B, the generalized Schur\n*  factorization has the form\n*  \n*     A = Q*S*Z**H,  B = Q*T*Z**H\n*  \n*  where Q and Z are unitary matrices and S and T are upper triangular.\n*  The columns of Q are the left Schur vectors\n*  and the columns of Z are the right Schur vectors.\n*  \n*  If only the eigenvalues of (A,B) are needed, the driver routine\n*  ZGEGV should be used instead.  See ZGEGV for a description of the\n*  eigenvalues of the generalized nonsymmetric eigenvalue problem\n*  (GNEP).\n*\n\n*  Arguments\n*  =========\n*\n*  JOBVSL   (input) CHARACTER*1\n*          = 'N':  do not compute the left Schur vectors;\n*          = 'V':  compute the left Schur vectors (returned in VSL).\n*\n*  JOBVSR   (input) CHARACTER*1\n*          = 'N':  do not compute the right Schur vectors;\n*          = 'V':  compute the right Schur vectors (returned in VSR).\n*\n*  N       (input) INTEGER\n*          The order of the matrices A, B, VSL, and VSR.  N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA, N)\n*          On entry, the matrix A.\n*          On exit, the upper triangular matrix S from the generalized\n*          Schur factorization.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of A.  LDA >= max(1,N).\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB, N)\n*          On entry, the matrix B.\n*          On exit, the upper triangular matrix T from the generalized\n*          Schur factorization.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of B.  LDB >= max(1,N).\n*\n*  ALPHA   (output) COMPLEX*16 array, dimension (N)\n*          The complex scalars alpha that define the eigenvalues of\n*          GNEP.  ALPHA(j) = S(j,j), the diagonal element of the Schur\n*          form of A.\n*\n*  BETA    (output) COMPLEX*16 array, dimension (N)\n*          The non-negative real scalars beta that define the\n*          eigenvalues of GNEP.  BETA(j) = T(j,j), the diagonal element\n*          of the triangular factor T.\n*\n*          Together, the quantities alpha = ALPHA(j) and beta = BETA(j)\n*          represent the j-th eigenvalue of the matrix pair (A,B), in\n*          one of the forms lambda = alpha/beta or mu = beta/alpha.\n*          Since either lambda or mu may overflow, they should not,\n*          in general, be computed.\n*\n*\n*  VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)\n*          If JOBVSL = 'V', the matrix of left Schur vectors Q.\n*          Not referenced if JOBVSL = 'N'.\n*\n*  LDVSL   (input) INTEGER\n*          The leading dimension of the matrix VSL. LDVSL >= 1, and\n*          if JOBVSL = 'V', LDVSL >= N.\n*\n*  VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)\n*          If JOBVSR = 'V', the matrix of right Schur vectors Z.\n*          Not referenced if JOBVSR = 'N'.\n*\n*  LDVSR   (input) INTEGER\n*          The leading dimension of the matrix VSR. LDVSR >= 1, and\n*          if JOBVSR = 'V', LDVSR >= N.\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The dimension of the array WORK.  LWORK >= max(1,2*N).\n*          For good performance, LWORK must generally be larger.\n*          To compute the optimal value of LWORK, call ILAENV to get\n*          blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.)  Then compute:\n*          NB  -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR;\n*          the optimal LWORK is N*(NB+1).\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal size of the WORK array, returns\n*          this value as the first entry of the WORK array, and no error\n*          message related to LWORK is issued by XERBLA.\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (3*N)\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          =1,...,N:\n*                The QZ iteration failed.  (A,B) are not in Schur\n*                form, but ALPHA(j) and BETA(j) should be correct for\n*                j=INFO+1,...,N.\n*          > N:  errors that usually indicate LAPACK problems:\n*                =N+1: error return from ZGGBAL\n*                =N+2: error return from ZGEQRF\n*                =N+3: error return from ZUNMQR\n*                =N+4: error return from ZUNGQR\n*                =N+5: error return from ZGGHRD\n*                =N+6: error return from ZHGEQZ (other than failed\n*                                               iteration)\n*                =N+7: error return from ZGGBAK (computing VSL)\n*                =N+8: error return from ZGGBAK (computing VSR)\n*                =N+9: error return from ZLASCL (various places)\n*\n\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  alpha, beta, vsl, vsr, work, info, a, b = NumRu::Lapack.zgegs( jobvsl, jobvsr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 4 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
  rblapack_jobvsl = argv[0];
  rblapack_jobvsr = argv[1];
  rblapack_a = argv[2];
  rblapack_b = argv[3];
  if (argc == 5) {
    rblapack_lwork = argv[4];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
  } else {
    rblapack_lwork = Qnil;
  }

  jobvsl = StringValueCStr(rblapack_jobvsl)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  jobvsr = StringValueCStr(rblapack_jobvsr)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (4th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  if (NA_SHAPE1(rblapack_b) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  ldvsl = lsame_(&jobvsl,"V") ? n : 1;
  if (rblapack_lwork == Qnil)
    lwork = 2*n;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  ldvsr = lsame_(&jobvsr,"V") ? n : 1;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_alpha = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  alpha = NA_PTR_TYPE(rblapack_alpha, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_beta = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  beta = NA_PTR_TYPE(rblapack_beta, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldvsl;
    shape[1] = n;
    rblapack_vsl = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vsl = NA_PTR_TYPE(rblapack_vsl, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldvsr;
    shape[1] = n;
    rblapack_vsr = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vsr = NA_PTR_TYPE(rblapack_vsr, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  rwork = ALLOC_N(doublereal, (3*n));

  zgegs_(&jobvsl, &jobvsr, &n, a, &lda, b, &ldb, alpha, beta, vsl, &ldvsl, vsr, &ldvsr, work, &lwork, rwork, &info);

  free(rwork);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(8, rblapack_alpha, rblapack_beta, rblapack_vsl, rblapack_vsr, rblapack_work, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_zgegs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zgegs", rblapack_zgegs, -1);
}