1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
#include "rb_lapack.h"
extern VOID zggsvd_(char* jobu, char* jobv, char* jobq, integer* m, integer* n, integer* p, integer* k, integer* l, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublereal* alpha, doublereal* beta, doublecomplex* u, integer* ldu, doublecomplex* v, integer* ldv, doublecomplex* q, integer* ldq, doublecomplex* work, doublereal* rwork, integer* iwork, integer* info);
static VALUE
rblapack_zggsvd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobu;
char jobu;
VALUE rblapack_jobv;
char jobv;
VALUE rblapack_jobq;
char jobq;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_b;
doublecomplex *b;
VALUE rblapack_k;
integer k;
VALUE rblapack_l;
integer l;
VALUE rblapack_alpha;
doublereal *alpha;
VALUE rblapack_beta;
doublereal *beta;
VALUE rblapack_u;
doublecomplex *u;
VALUE rblapack_v;
doublecomplex *v;
VALUE rblapack_q;
doublecomplex *q;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_a_out__;
doublecomplex *a_out__;
VALUE rblapack_b_out__;
doublecomplex *b_out__;
doublecomplex *work;
doublereal *rwork;
integer lda;
integer n;
integer ldb;
integer ldu;
integer m;
integer ldv;
integer p;
integer ldq;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n k, l, alpha, beta, u, v, q, iwork, info, a, b = NumRu::Lapack.zggsvd( jobu, jobv, jobq, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, RWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZGGSVD computes the generalized singular value decomposition (GSVD)\n* of an M-by-N complex matrix A and P-by-N complex matrix B:\n*\n* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R )\n*\n* where U, V and Q are unitary matrices, and Z' means the conjugate\n* transpose of Z. Let K+L = the effective numerical rank of the\n* matrix (A',B')', then R is a (K+L)-by-(K+L) nonsingular upper\n* triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) \"diagonal\"\n* matrices and of the following structures, respectively:\n*\n* If M-K-L >= 0,\n*\n* K L\n* D1 = K ( I 0 )\n* L ( 0 C )\n* M-K-L ( 0 0 )\n*\n* K L\n* D2 = L ( 0 S )\n* P-L ( 0 0 )\n*\n* N-K-L K L\n* ( 0 R ) = K ( 0 R11 R12 )\n* L ( 0 0 R22 )\n* where\n*\n* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),\n* S = diag( BETA(K+1), ... , BETA(K+L) ),\n* C**2 + S**2 = I.\n*\n* R is stored in A(1:K+L,N-K-L+1:N) on exit.\n*\n* If M-K-L < 0,\n*\n* K M-K K+L-M\n* D1 = K ( I 0 0 )\n* M-K ( 0 C 0 )\n*\n* K M-K K+L-M\n* D2 = M-K ( 0 S 0 )\n* K+L-M ( 0 0 I )\n* P-L ( 0 0 0 )\n*\n* N-K-L K M-K K+L-M\n* ( 0 R ) = K ( 0 R11 R12 R13 )\n* M-K ( 0 0 R22 R23 )\n* K+L-M ( 0 0 0 R33 )\n*\n* where\n*\n* C = diag( ALPHA(K+1), ... , ALPHA(M) ),\n* S = diag( BETA(K+1), ... , BETA(M) ),\n* C**2 + S**2 = I.\n*\n* (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored\n* ( 0 R22 R23 )\n* in B(M-K+1:L,N+M-K-L+1:N) on exit.\n*\n* The routine computes C, S, R, and optionally the unitary\n* transformation matrices U, V and Q.\n*\n* In particular, if B is an N-by-N nonsingular matrix, then the GSVD of\n* A and B implicitly gives the SVD of A*inv(B):\n* A*inv(B) = U*(D1*inv(D2))*V'.\n* If ( A',B')' has orthnormal columns, then the GSVD of A and B is also\n* equal to the CS decomposition of A and B. Furthermore, the GSVD can\n* be used to derive the solution of the eigenvalue problem:\n* A'*A x = lambda* B'*B x.\n* In some literature, the GSVD of A and B is presented in the form\n* U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 )\n* where U and V are orthogonal and X is nonsingular, and D1 and D2 are\n* ``diagonal''. The former GSVD form can be converted to the latter\n* form by taking the nonsingular matrix X as\n*\n* X = Q*( I 0 )\n* ( 0 inv(R) )\n*\n\n* Arguments\n* =========\n*\n* JOBU (input) CHARACTER*1\n* = 'U': Unitary matrix U is computed;\n* = 'N': U is not computed.\n*\n* JOBV (input) CHARACTER*1\n* = 'V': Unitary matrix V is computed;\n* = 'N': V is not computed.\n*\n* JOBQ (input) CHARACTER*1\n* = 'Q': Unitary matrix Q is computed;\n* = 'N': Q is not computed.\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrices A and B. N >= 0.\n*\n* P (input) INTEGER\n* The number of rows of the matrix B. P >= 0.\n*\n* K (output) INTEGER\n* L (output) INTEGER\n* On exit, K and L specify the dimension of the subblocks\n* described in Purpose.\n* K + L = effective numerical rank of (A',B')'.\n*\n* A (input/output) COMPLEX*16 array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, A contains the triangular matrix R, or part of R.\n* See Purpose for details.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* B (input/output) COMPLEX*16 array, dimension (LDB,N)\n* On entry, the P-by-N matrix B.\n* On exit, B contains part of the triangular matrix R if\n* M-K-L < 0. See Purpose for details.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,P).\n*\n* ALPHA (output) DOUBLE PRECISION array, dimension (N)\n* BETA (output) DOUBLE PRECISION array, dimension (N)\n* On exit, ALPHA and BETA contain the generalized singular\n* value pairs of A and B;\n* ALPHA(1:K) = 1,\n* BETA(1:K) = 0,\n* and if M-K-L >= 0,\n* ALPHA(K+1:K+L) = C,\n* BETA(K+1:K+L) = S,\n* or if M-K-L < 0,\n* ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0\n* BETA(K+1:M) = S, BETA(M+1:K+L) = 1\n* and\n* ALPHA(K+L+1:N) = 0\n* BETA(K+L+1:N) = 0\n*\n* U (output) COMPLEX*16 array, dimension (LDU,M)\n* If JOBU = 'U', U contains the M-by-M unitary matrix U.\n* If JOBU = 'N', U is not referenced.\n*\n* LDU (input) INTEGER\n* The leading dimension of the array U. LDU >= max(1,M) if\n* JOBU = 'U'; LDU >= 1 otherwise.\n*\n* V (output) COMPLEX*16 array, dimension (LDV,P)\n* If JOBV = 'V', V contains the P-by-P unitary matrix V.\n* If JOBV = 'N', V is not referenced.\n*\n* LDV (input) INTEGER\n* The leading dimension of the array V. LDV >= max(1,P) if\n* JOBV = 'V'; LDV >= 1 otherwise.\n*\n* Q (output) COMPLEX*16 array, dimension (LDQ,N)\n* If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.\n* If JOBQ = 'N', Q is not referenced.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q. LDQ >= max(1,N) if\n* JOBQ = 'Q'; LDQ >= 1 otherwise.\n*\n* WORK (workspace) COMPLEX*16 array, dimension (max(3*N,M,P)+N)\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)\n*\n* IWORK (workspace/output) INTEGER array, dimension (N)\n* On exit, IWORK stores the sorting information. More\n* precisely, the following loop will sort ALPHA\n* for I = K+1, min(M,K+L)\n* swap ALPHA(I) and ALPHA(IWORK(I))\n* endfor\n* such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = 1, the Jacobi-type procedure failed to\n* converge. For further details, see subroutine ZTGSJA.\n*\n* Internal Parameters\n* ===================\n*\n* TOLA DOUBLE PRECISION\n* TOLB DOUBLE PRECISION\n* TOLA and TOLB are the thresholds to determine the effective\n* rank of (A',B')'. Generally, they are set to\n* TOLA = MAX(M,N)*norm(A)*MAZHEPS,\n* TOLB = MAX(P,N)*norm(B)*MAZHEPS.\n* The size of TOLA and TOLB may affect the size of backward\n* errors of the decomposition.\n*\n\n* Further Details\n* ===============\n*\n* 2-96 Based on modifications by\n* Ming Gu and Huan Ren, Computer Science Division, University of\n* California at Berkeley, USA\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL WANTQ, WANTU, WANTV\n INTEGER I, IBND, ISUB, J, NCYCLE\n DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n DOUBLE PRECISION DLAMCH, ZLANGE\n EXTERNAL LSAME, DLAMCH, ZLANGE\n* ..\n* .. External Subroutines ..\n EXTERNAL DCOPY, XERBLA, ZGGSVP, ZTGSJA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX, MIN\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n k, l, alpha, beta, u, v, q, iwork, info, a, b = NumRu::Lapack.zggsvd( jobu, jobv, jobq, a, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_jobu = argv[0];
rblapack_jobv = argv[1];
rblapack_jobq = argv[2];
rblapack_a = argv[3];
rblapack_b = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
jobu = StringValueCStr(rblapack_jobu)[0];
jobq = StringValueCStr(rblapack_jobq)[0];
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
n = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
p = ldb;
jobv = StringValueCStr(rblapack_jobv)[0];
ldv = lsame_(&jobv,"V") ? MAX(1,p) : 1;
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of b");
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
ldq = lsame_(&jobq,"Q") ? MAX(1,n) : 1;
m = lda;
ldu = lsame_(&jobu,"U") ? MAX(1,m) : 1;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_alpha = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
alpha = NA_PTR_TYPE(rblapack_alpha, doublereal*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_beta = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
beta = NA_PTR_TYPE(rblapack_beta, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldu;
shape[1] = m;
rblapack_u = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
u = NA_PTR_TYPE(rblapack_u, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldv;
shape[1] = p;
rblapack_v = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
v = NA_PTR_TYPE(rblapack_v, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = n;
rblapack_q = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
q = NA_PTR_TYPE(rblapack_q, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[2];
shape[0] = lda;
shape[1] = n;
rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
rblapack_a = rblapack_a_out__;
a = a_out__;
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = n;
rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
work = ALLOC_N(doublecomplex, (MAX(3*n,m)*(p)+n));
rwork = ALLOC_N(doublereal, (2*n));
zggsvd_(&jobu, &jobv, &jobq, &m, &n, &p, &k, &l, a, &lda, b, &ldb, alpha, beta, u, &ldu, v, &ldv, q, &ldq, work, rwork, iwork, &info);
free(work);
free(rwork);
rblapack_k = INT2NUM(k);
rblapack_l = INT2NUM(l);
rblapack_info = INT2NUM(info);
return rb_ary_new3(11, rblapack_k, rblapack_l, rblapack_alpha, rblapack_beta, rblapack_u, rblapack_v, rblapack_q, rblapack_iwork, rblapack_info, rblapack_a, rblapack_b);
}
void
init_lapack_zggsvd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zggsvd", rblapack_zggsvd, -1);
}
|