File: zggsvd.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (184 lines) | stat: -rw-r--r-- 13,912 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include "rb_lapack.h"

extern VOID zggsvd_(char* jobu, char* jobv, char* jobq, integer* m, integer* n, integer* p, integer* k, integer* l, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, doublereal* alpha, doublereal* beta, doublecomplex* u, integer* ldu, doublecomplex* v, integer* ldv, doublecomplex* q, integer* ldq, doublecomplex* work, doublereal* rwork, integer* iwork, integer* info);


static VALUE
rblapack_zggsvd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobu;
  char jobu; 
  VALUE rblapack_jobv;
  char jobv; 
  VALUE rblapack_jobq;
  char jobq; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_b;
  doublecomplex *b; 
  VALUE rblapack_k;
  integer k; 
  VALUE rblapack_l;
  integer l; 
  VALUE rblapack_alpha;
  doublereal *alpha; 
  VALUE rblapack_beta;
  doublereal *beta; 
  VALUE rblapack_u;
  doublecomplex *u; 
  VALUE rblapack_v;
  doublecomplex *v; 
  VALUE rblapack_q;
  doublecomplex *q; 
  VALUE rblapack_iwork;
  integer *iwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;
  VALUE rblapack_b_out__;
  doublecomplex *b_out__;
  doublecomplex *work;
  doublereal *rwork;

  integer lda;
  integer n;
  integer ldb;
  integer ldu;
  integer m;
  integer ldv;
  integer p;
  integer ldq;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  k, l, alpha, beta, u, v, q, iwork, info, a, b = NumRu::Lapack.zggsvd( jobu, jobv, jobq, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, RWORK, IWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZGGSVD computes the generalized singular value decomposition (GSVD)\n*  of an M-by-N complex matrix A and P-by-N complex matrix B:\n*\n*        U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R )\n*\n*  where U, V and Q are unitary matrices, and Z' means the conjugate\n*  transpose of Z.  Let K+L = the effective numerical rank of the\n*  matrix (A',B')', then R is a (K+L)-by-(K+L) nonsingular upper\n*  triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) \"diagonal\"\n*  matrices and of the following structures, respectively:\n*\n*  If M-K-L >= 0,\n*\n*                      K  L\n*         D1 =     K ( I  0 )\n*                  L ( 0  C )\n*              M-K-L ( 0  0 )\n*\n*                    K  L\n*         D2 =   L ( 0  S )\n*              P-L ( 0  0 )\n*\n*                  N-K-L  K    L\n*    ( 0 R ) = K (  0   R11  R12 )\n*              L (  0    0   R22 )\n*  where\n*\n*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),\n*    S = diag( BETA(K+1),  ... , BETA(K+L) ),\n*    C**2 + S**2 = I.\n*\n*    R is stored in A(1:K+L,N-K-L+1:N) on exit.\n*\n*  If M-K-L < 0,\n*\n*                    K M-K K+L-M\n*         D1 =   K ( I  0    0   )\n*              M-K ( 0  C    0   )\n*\n*                      K M-K K+L-M\n*         D2 =   M-K ( 0  S    0  )\n*              K+L-M ( 0  0    I  )\n*                P-L ( 0  0    0  )\n*\n*                     N-K-L  K   M-K  K+L-M\n*    ( 0 R ) =     K ( 0    R11  R12  R13  )\n*                M-K ( 0     0   R22  R23  )\n*              K+L-M ( 0     0    0   R33  )\n*\n*  where\n*\n*    C = diag( ALPHA(K+1), ... , ALPHA(M) ),\n*    S = diag( BETA(K+1),  ... , BETA(M) ),\n*    C**2 + S**2 = I.\n*\n*    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored\n*    ( 0  R22 R23 )\n*    in B(M-K+1:L,N+M-K-L+1:N) on exit.\n*\n*  The routine computes C, S, R, and optionally the unitary\n*  transformation matrices U, V and Q.\n*\n*  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of\n*  A and B implicitly gives the SVD of A*inv(B):\n*                       A*inv(B) = U*(D1*inv(D2))*V'.\n*  If ( A',B')' has orthnormal columns, then the GSVD of A and B is also\n*  equal to the CS decomposition of A and B. Furthermore, the GSVD can\n*  be used to derive the solution of the eigenvalue problem:\n*                       A'*A x = lambda* B'*B x.\n*  In some literature, the GSVD of A and B is presented in the form\n*                   U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 )\n*  where U and V are orthogonal and X is nonsingular, and D1 and D2 are\n*  ``diagonal''.  The former GSVD form can be converted to the latter\n*  form by taking the nonsingular matrix X as\n*\n*                        X = Q*(  I   0    )\n*                              (  0 inv(R) )\n*\n\n*  Arguments\n*  =========\n*\n*  JOBU    (input) CHARACTER*1\n*          = 'U':  Unitary matrix U is computed;\n*          = 'N':  U is not computed.\n*\n*  JOBV    (input) CHARACTER*1\n*          = 'V':  Unitary matrix V is computed;\n*          = 'N':  V is not computed.\n*\n*  JOBQ    (input) CHARACTER*1\n*          = 'Q':  Unitary matrix Q is computed;\n*          = 'N':  Q is not computed.\n*\n*  M       (input) INTEGER\n*          The number of rows of the matrix A.  M >= 0.\n*\n*  N       (input) INTEGER\n*          The number of columns of the matrices A and B.  N >= 0.\n*\n*  P       (input) INTEGER\n*          The number of rows of the matrix B.  P >= 0.\n*\n*  K       (output) INTEGER\n*  L       (output) INTEGER\n*          On exit, K and L specify the dimension of the subblocks\n*          described in Purpose.\n*          K + L = effective numerical rank of (A',B')'.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)\n*          On entry, the M-by-N matrix A.\n*          On exit, A contains the triangular matrix R, or part of R.\n*          See Purpose for details.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A. LDA >= max(1,M).\n*\n*  B       (input/output) COMPLEX*16 array, dimension (LDB,N)\n*          On entry, the P-by-N matrix B.\n*          On exit, B contains part of the triangular matrix R if\n*          M-K-L < 0.  See Purpose for details.\n*\n*  LDB     (input) INTEGER\n*          The leading dimension of the array B. LDB >= max(1,P).\n*\n*  ALPHA   (output) DOUBLE PRECISION array, dimension (N)\n*  BETA    (output) DOUBLE PRECISION array, dimension (N)\n*          On exit, ALPHA and BETA contain the generalized singular\n*          value pairs of A and B;\n*            ALPHA(1:K) = 1,\n*            BETA(1:K)  = 0,\n*          and if M-K-L >= 0,\n*            ALPHA(K+1:K+L) = C,\n*            BETA(K+1:K+L)  = S,\n*          or if M-K-L < 0,\n*            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0\n*            BETA(K+1:M) = S, BETA(M+1:K+L) = 1\n*          and\n*            ALPHA(K+L+1:N) = 0\n*            BETA(K+L+1:N)  = 0\n*\n*  U       (output) COMPLEX*16 array, dimension (LDU,M)\n*          If JOBU = 'U', U contains the M-by-M unitary matrix U.\n*          If JOBU = 'N', U is not referenced.\n*\n*  LDU     (input) INTEGER\n*          The leading dimension of the array U. LDU >= max(1,M) if\n*          JOBU = 'U'; LDU >= 1 otherwise.\n*\n*  V       (output) COMPLEX*16 array, dimension (LDV,P)\n*          If JOBV = 'V', V contains the P-by-P unitary matrix V.\n*          If JOBV = 'N', V is not referenced.\n*\n*  LDV     (input) INTEGER\n*          The leading dimension of the array V. LDV >= max(1,P) if\n*          JOBV = 'V'; LDV >= 1 otherwise.\n*\n*  Q       (output) COMPLEX*16 array, dimension (LDQ,N)\n*          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.\n*          If JOBQ = 'N', Q is not referenced.\n*\n*  LDQ     (input) INTEGER\n*          The leading dimension of the array Q. LDQ >= max(1,N) if\n*          JOBQ = 'Q'; LDQ >= 1 otherwise.\n*\n*  WORK    (workspace) COMPLEX*16 array, dimension (max(3*N,M,P)+N)\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)\n*\n*  IWORK   (workspace/output) INTEGER array, dimension (N)\n*          On exit, IWORK stores the sorting information. More\n*          precisely, the following loop will sort ALPHA\n*             for I = K+1, min(M,K+L)\n*                 swap ALPHA(I) and ALPHA(IWORK(I))\n*             endfor\n*          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit.\n*          < 0:  if INFO = -i, the i-th argument had an illegal value.\n*          > 0:  if INFO = 1, the Jacobi-type procedure failed to\n*                converge.  For further details, see subroutine ZTGSJA.\n*\n*  Internal Parameters\n*  ===================\n*\n*  TOLA    DOUBLE PRECISION\n*  TOLB    DOUBLE PRECISION\n*          TOLA and TOLB are the thresholds to determine the effective\n*          rank of (A',B')'. Generally, they are set to\n*                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,\n*                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.\n*          The size of TOLA and TOLB may affect the size of backward\n*          errors of the decomposition.\n*\n\n*  Further Details\n*  ===============\n*\n*  2-96 Based on modifications by\n*     Ming Gu and Huan Ren, Computer Science Division, University of\n*     California at Berkeley, USA\n*\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            WANTQ, WANTU, WANTV\n      INTEGER            I, IBND, ISUB, J, NCYCLE\n      DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      DOUBLE PRECISION   DLAMCH, ZLANGE\n      EXTERNAL           LSAME, DLAMCH, ZLANGE\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           DCOPY, XERBLA, ZGGSVP, ZTGSJA\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          MAX, MIN\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  k, l, alpha, beta, u, v, q, iwork, info, a, b = NumRu::Lapack.zggsvd( jobu, jobv, jobq, a, b, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 5 && argc != 5)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
  rblapack_jobu = argv[0];
  rblapack_jobv = argv[1];
  rblapack_jobq = argv[2];
  rblapack_a = argv[3];
  rblapack_b = argv[4];
  if (argc == 5) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  jobu = StringValueCStr(rblapack_jobu)[0];
  jobq = StringValueCStr(rblapack_jobq)[0];
  if (!NA_IsNArray(rblapack_b))
    rb_raise(rb_eArgError, "b (5th argument) must be NArray");
  if (NA_RANK(rblapack_b) != 2)
    rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
  ldb = NA_SHAPE0(rblapack_b);
  n = NA_SHAPE1(rblapack_b);
  if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
    rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
  b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
  p = ldb;
  jobv = StringValueCStr(rblapack_jobv)[0];
  ldv = lsame_(&jobv,"V") ? MAX(1,p) : 1;
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (4th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of b");
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  ldq = lsame_(&jobq,"Q") ? MAX(1,n) : 1;
  m = lda;
  ldu = lsame_(&jobu,"U") ? MAX(1,m) : 1;
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_alpha = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  alpha = NA_PTR_TYPE(rblapack_alpha, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_beta = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  beta = NA_PTR_TYPE(rblapack_beta, doublereal*);
  {
    na_shape_t shape[2];
    shape[0] = ldu;
    shape[1] = m;
    rblapack_u = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  u = NA_PTR_TYPE(rblapack_u, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldv;
    shape[1] = p;
    rblapack_v = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  v = NA_PTR_TYPE(rblapack_v, doublecomplex*);
  {
    na_shape_t shape[2];
    shape[0] = ldq;
    shape[1] = n;
    rblapack_q = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  q = NA_PTR_TYPE(rblapack_q, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldb;
    shape[1] = n;
    rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
  MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
  rblapack_b = rblapack_b_out__;
  b = b_out__;
  work = ALLOC_N(doublecomplex, (MAX(3*n,m)*(p)+n));
  rwork = ALLOC_N(doublereal, (2*n));

  zggsvd_(&jobu, &jobv, &jobq, &m, &n, &p, &k, &l, a, &lda, b, &ldb, alpha, beta, u, &ldu, v, &ldv, q, &ldq, work, rwork, iwork, &info);

  free(work);
  free(rwork);
  rblapack_k = INT2NUM(k);
  rblapack_l = INT2NUM(l);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(11, rblapack_k, rblapack_l, rblapack_alpha, rblapack_beta, rblapack_u, rblapack_v, rblapack_q, rblapack_iwork, rblapack_info, rblapack_a, rblapack_b);
}

void
init_lapack_zggsvd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zggsvd", rblapack_zggsvd, -1);
}