1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#include "rb_lapack.h"
extern VOID zhbgv_(char* jobz, char* uplo, integer* n, integer* ka, integer* kb, doublecomplex* ab, integer* ldab, doublecomplex* bb, integer* ldbb, doublereal* w, doublecomplex* z, integer* ldz, doublecomplex* work, doublereal* rwork, integer* info);
static VALUE
rblapack_zhbgv(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ka;
integer ka;
VALUE rblapack_kb;
integer kb;
VALUE rblapack_ab;
doublecomplex *ab;
VALUE rblapack_bb;
doublecomplex *bb;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublecomplex *z;
VALUE rblapack_info;
integer info;
VALUE rblapack_ab_out__;
doublecomplex *ab_out__;
VALUE rblapack_bb_out__;
doublecomplex *bb_out__;
doublecomplex *work;
doublereal *rwork;
integer ldab;
integer n;
integer ldbb;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ab, bb = NumRu::Lapack.zhbgv( jobz, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZHBGV computes all the eigenvalues, and optionally, the eigenvectors\n* of a complex generalized Hermitian-definite banded eigenproblem, of\n* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian\n* and banded, and B is also positive definite.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangles of A and B are stored;\n* = 'L': Lower triangles of A and B are stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* KA (input) INTEGER\n* The number of superdiagonals of the matrix A if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KA >= 0.\n*\n* KB (input) INTEGER\n* The number of superdiagonals of the matrix B if UPLO = 'U',\n* or the number of subdiagonals if UPLO = 'L'. KB >= 0.\n*\n* AB (input/output) COMPLEX*16 array, dimension (LDAB, N)\n* On entry, the upper or lower triangle of the Hermitian band\n* matrix A, stored in the first ka+1 rows of the array. The\n* j-th column of A is stored in the j-th column of the array AB\n* as follows:\n* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;\n* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).\n*\n* On exit, the contents of AB are destroyed.\n*\n* LDAB (input) INTEGER\n* The leading dimension of the array AB. LDAB >= KA+1.\n*\n* BB (input/output) COMPLEX*16 array, dimension (LDBB, N)\n* On entry, the upper or lower triangle of the Hermitian band\n* matrix B, stored in the first kb+1 rows of the array. The\n* j-th column of B is stored in the j-th column of the array BB\n* as follows:\n* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;\n* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).\n*\n* On exit, the factor S from the split Cholesky factorization\n* B = S**H*S, as returned by ZPBSTF.\n*\n* LDBB (input) INTEGER\n* The leading dimension of the array BB. LDBB >= KB+1.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n* eigenvectors, with the i-th column of Z holding the\n* eigenvector associated with W(i). The eigenvectors are\n* normalized so that Z**H*B*Z = I.\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= N.\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N)\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (3*N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, and i is:\n* <= N: the algorithm failed to converge:\n* i off-diagonal elements of an intermediate\n* tridiagonal form did not converge to zero;\n* > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF\n* returned INFO = i: B is not positive definite.\n* The factorization of B could not be completed and\n* no eigenvalues or eigenvectors were computed.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL UPPER, WANTZ\n CHARACTER VECT\n INTEGER IINFO, INDE, INDWRK\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ab, bb = NumRu::Lapack.zhbgv( jobz, uplo, ka, kb, ab, bb, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 6 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 6)", argc);
rblapack_jobz = argv[0];
rblapack_uplo = argv[1];
rblapack_ka = argv[2];
rblapack_kb = argv[3];
rblapack_ab = argv[4];
rblapack_bb = argv[5];
if (argc == 6) {
} else if (rblapack_options != Qnil) {
} else {
}
jobz = StringValueCStr(rblapack_jobz)[0];
ka = NUM2INT(rblapack_ka);
if (!NA_IsNArray(rblapack_ab))
rb_raise(rb_eArgError, "ab (5th argument) must be NArray");
if (NA_RANK(rblapack_ab) != 2)
rb_raise(rb_eArgError, "rank of ab (5th argument) must be %d", 2);
ldab = NA_SHAPE0(rblapack_ab);
n = NA_SHAPE1(rblapack_ab);
if (NA_TYPE(rblapack_ab) != NA_DCOMPLEX)
rblapack_ab = na_change_type(rblapack_ab, NA_DCOMPLEX);
ab = NA_PTR_TYPE(rblapack_ab, doublecomplex*);
uplo = StringValueCStr(rblapack_uplo)[0];
if (!NA_IsNArray(rblapack_bb))
rb_raise(rb_eArgError, "bb (6th argument) must be NArray");
if (NA_RANK(rblapack_bb) != 2)
rb_raise(rb_eArgError, "rank of bb (6th argument) must be %d", 2);
ldbb = NA_SHAPE0(rblapack_bb);
if (NA_SHAPE1(rblapack_bb) != n)
rb_raise(rb_eRuntimeError, "shape 1 of bb must be the same as shape 1 of ab");
if (NA_TYPE(rblapack_bb) != NA_DCOMPLEX)
rblapack_bb = na_change_type(rblapack_bb, NA_DCOMPLEX);
bb = NA_PTR_TYPE(rblapack_bb, doublecomplex*);
kb = NUM2INT(rblapack_kb);
ldz = lsame_(&jobz,"V") ? n : 1;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldab;
shape[1] = n;
rblapack_ab_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
ab_out__ = NA_PTR_TYPE(rblapack_ab_out__, doublecomplex*);
MEMCPY(ab_out__, ab, doublecomplex, NA_TOTAL(rblapack_ab));
rblapack_ab = rblapack_ab_out__;
ab = ab_out__;
{
na_shape_t shape[2];
shape[0] = ldbb;
shape[1] = n;
rblapack_bb_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
bb_out__ = NA_PTR_TYPE(rblapack_bb_out__, doublecomplex*);
MEMCPY(bb_out__, bb, doublecomplex, NA_TOTAL(rblapack_bb));
rblapack_bb = rblapack_bb_out__;
bb = bb_out__;
work = ALLOC_N(doublecomplex, (n));
rwork = ALLOC_N(doublereal, (3*n));
zhbgv_(&jobz, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb, w, z, &ldz, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_w, rblapack_z, rblapack_info, rblapack_ab, rblapack_bb);
}
void
init_lapack_zhbgv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhbgv", rblapack_zhbgv, -1);
}
|