File: zheevd.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (143 lines) | stat: -rw-r--r-- 10,031 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#include "rb_lapack.h"

extern VOID zheevd_(char* jobz, char* uplo, integer* n, doublecomplex* a, integer* lda, doublereal* w, doublecomplex* work, integer* lwork, doublereal* rwork, integer* lrwork, integer* iwork, integer* liwork, integer* info);


static VALUE
rblapack_zheevd(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_jobz;
  char jobz; 
  VALUE rblapack_uplo;
  char uplo; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_lwork;
  integer lwork; 
  VALUE rblapack_lrwork;
  integer lrwork; 
  VALUE rblapack_liwork;
  integer liwork; 
  VALUE rblapack_w;
  doublereal *w; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_rwork;
  doublereal *rwork; 
  VALUE rblapack_iwork;
  integer *iwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_a_out__;
  doublecomplex *a_out__;

  integer lda;
  integer n;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, work, rwork, iwork, info, a = NumRu::Lapack.zheevd( jobz, uplo, a, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a\n*  complex Hermitian matrix A.  If eigenvectors are desired, it uses a\n*  divide and conquer algorithm.\n*\n*  The divide and conquer algorithm makes very mild assumptions about\n*  floating point arithmetic. It will work on machines with a guard\n*  digit in add/subtract, or on those binary machines without guard\n*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n*  Cray-2. It could conceivably fail on hexadecimal or decimal machines\n*  without guard digits, but we know of none.\n*\n\n*  Arguments\n*  =========\n*\n*  JOBZ    (input) CHARACTER*1\n*          = 'N':  Compute eigenvalues only;\n*          = 'V':  Compute eigenvalues and eigenvectors.\n*\n*  UPLO    (input) CHARACTER*1\n*          = 'U':  Upper triangle of A is stored;\n*          = 'L':  Lower triangle of A is stored.\n*\n*  N       (input) INTEGER\n*          The order of the matrix A.  N >= 0.\n*\n*  A       (input/output) COMPLEX*16 array, dimension (LDA, N)\n*          On entry, the Hermitian matrix A.  If UPLO = 'U', the\n*          leading N-by-N upper triangular part of A contains the\n*          upper triangular part of the matrix A.  If UPLO = 'L',\n*          the leading N-by-N lower triangular part of A contains\n*          the lower triangular part of the matrix A.\n*          On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n*          orthonormal eigenvectors of the matrix A.\n*          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')\n*          or the upper triangle (if UPLO='U') of A, including the\n*          diagonal, is destroyed.\n*\n*  LDA     (input) INTEGER\n*          The leading dimension of the array A.  LDA >= max(1,N).\n*\n*  W       (output) DOUBLE PRECISION array, dimension (N)\n*          If INFO = 0, the eigenvalues in ascending order.\n*\n*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n*  LWORK   (input) INTEGER\n*          The length of the array WORK.\n*          If N <= 1,                LWORK must be at least 1.\n*          If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.\n*          If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.\n*\n*          If LWORK = -1, then a workspace query is assumed; the routine\n*          only calculates the optimal sizes of the WORK, RWORK and\n*          IWORK arrays, returns these values as the first entries of\n*          the WORK, RWORK and IWORK arrays, and no error message\n*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n*  RWORK   (workspace/output) DOUBLE PRECISION array,\n*                                         dimension (LRWORK)\n*          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.\n*\n*  LRWORK  (input) INTEGER\n*          The dimension of the array RWORK.\n*          If N <= 1,                LRWORK must be at least 1.\n*          If JOBZ  = 'N' and N > 1, LRWORK must be at least N.\n*          If JOBZ  = 'V' and N > 1, LRWORK must be at least\n*                         1 + 5*N + 2*N**2.\n*\n*          If LRWORK = -1, then a workspace query is assumed; the\n*          routine only calculates the optimal sizes of the WORK, RWORK\n*          and IWORK arrays, returns these values as the first entries\n*          of the WORK, RWORK and IWORK arrays, and no error message\n*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.\n*\n*  LIWORK  (input) INTEGER\n*          The dimension of the array IWORK.\n*          If N <= 1,                LIWORK must be at least 1.\n*          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.\n*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.\n*\n*          If LIWORK = -1, then a workspace query is assumed; the\n*          routine only calculates the optimal sizes of the WORK, RWORK\n*          and IWORK arrays, returns these values as the first entries\n*          of the WORK, RWORK and IWORK arrays, and no error message\n*          related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed\n*                to converge; i off-diagonal elements of an intermediate\n*                tridiagonal form did not converge to zero;\n*                if INFO = i and JOBZ = 'V', then the algorithm failed\n*                to compute an eigenvalue while working on the submatrix\n*                lying in rows and columns INFO/(N+1) through\n*                mod(INFO,N+1).\n*\n\n*  Further Details\n*  ===============\n*\n*  Based on contributions by\n*     Jeff Rutter, Computer Science Division, University of California\n*     at Berkeley, USA\n*\n*  Modified description of INFO. Sven, 16 Feb 05.\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  w, work, rwork, iwork, info, a = NumRu::Lapack.zheevd( jobz, uplo, a, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 6)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_jobz = argv[0];
  rblapack_uplo = argv[1];
  rblapack_a = argv[2];
  if (argc == 6) {
    rblapack_lwork = argv[3];
    rblapack_lrwork = argv[4];
    rblapack_liwork = argv[5];
  } else if (rblapack_options != Qnil) {
    rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
    rblapack_lrwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lrwork")));
    rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
  } else {
    rblapack_lwork = Qnil;
    rblapack_lrwork = Qnil;
    rblapack_liwork = Qnil;
  }

  jobz = StringValueCStr(rblapack_jobz)[0];
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (3th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  n = NA_SHAPE1(rblapack_a);
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  if (rblapack_lrwork == Qnil)
    lrwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n+1 : lsame_(&jobz,"V") ? 1+5*n+2*n*n : 0;
  else {
    lrwork = NUM2INT(rblapack_lrwork);
  }
  uplo = StringValueCStr(rblapack_uplo)[0];
  if (rblapack_liwork == Qnil)
    liwork = n<=1 ? 1 : lsame_(&jobz,"N") ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
  else {
    liwork = NUM2INT(rblapack_liwork);
  }
  if (rblapack_lwork == Qnil)
    lwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n+1 : lsame_(&jobz,"V") ? 2*n+n*n : 0;
  else {
    lwork = NUM2INT(rblapack_lwork);
  }
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  w = NA_PTR_TYPE(rblapack_w, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lwork);
    rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,lrwork);
    rblapack_rwork = na_make_object(NA_DFLOAT, 1, shape, cNArray);
  }
  rwork = NA_PTR_TYPE(rblapack_rwork, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = MAX(1,liwork);
    rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
  {
    na_shape_t shape[2];
    shape[0] = lda;
    shape[1] = n;
    rblapack_a_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublecomplex*);
  MEMCPY(a_out__, a, doublecomplex, NA_TOTAL(rblapack_a));
  rblapack_a = rblapack_a_out__;
  a = a_out__;

  zheevd_(&jobz, &uplo, &n, a, &lda, w, work, &lwork, rwork, &lrwork, iwork, &liwork, &info);

  rblapack_info = INT2NUM(info);
  return rb_ary_new3(6, rblapack_w, rblapack_work, rblapack_rwork, rblapack_iwork, rblapack_info, rblapack_a);
}

void
init_lapack_zheevd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zheevd", rblapack_zheevd, -1);
}