1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#include "rb_lapack.h"
extern VOID zhpevd_(char* jobz, char* uplo, integer* n, doublecomplex* ap, doublereal* w, doublecomplex* z, integer* ldz, doublecomplex* work, integer* lwork, doublereal* rwork, integer* lrwork, integer* iwork, integer* liwork, integer* info);
static VALUE
rblapack_zhpevd(int argc, VALUE *argv, VALUE self){
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ap;
doublecomplex *ap;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_lrwork;
integer lrwork;
VALUE rblapack_liwork;
integer liwork;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublecomplex *z;
VALUE rblapack_work;
doublecomplex *work;
VALUE rblapack_rwork;
doublereal *rwork;
VALUE rblapack_iwork;
integer *iwork;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
doublecomplex *ap_out__;
integer ldap;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, work, rwork, iwork, info, ap = NumRu::Lapack.zhpevd( jobz, uplo, ap, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of\n* a complex Hermitian matrix A in packed storage. If eigenvectors are\n* desired, it uses a divide and conquer algorithm.\n*\n* The divide and conquer algorithm makes very mild assumptions about\n* floating point arithmetic. It will work on machines with a guard\n* digit in add/subtract, or on those binary machines without guard\n* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n* without guard digits, but we know of none.\n*\n\n* Arguments\n* =========\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangle of A is stored;\n* = 'L': Lower triangle of A is stored.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the Hermitian matrix\n* A, packed columnwise in a linear array. The j-th column of A\n* is stored in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n*\n* On exit, AP is overwritten by values generated during the\n* reduction to tridiagonal form. If UPLO = 'U', the diagonal\n* and first superdiagonal of the tridiagonal matrix T overwrite\n* the corresponding elements of A, and if UPLO = 'L', the\n* diagonal and first subdiagonal of T overwrite the\n* corresponding elements of A.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n* eigenvectors of the matrix A, with the i-th column of Z\n* holding the eigenvector associated with W(i).\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the required LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of array WORK.\n* If N <= 1, LWORK must be at least 1.\n* If JOBZ = 'N' and N > 1, LWORK must be at least N.\n* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the required sizes of the WORK, RWORK and\n* IWORK arrays, returns these values as the first entries of\n* the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* RWORK (workspace/output) DOUBLE PRECISION array,\n* dimension (LRWORK)\n* On exit, if INFO = 0, RWORK(1) returns the required LRWORK.\n*\n* LRWORK (input) INTEGER\n* The dimension of array RWORK.\n* If N <= 1, LRWORK must be at least 1.\n* If JOBZ = 'N' and N > 1, LRWORK must be at least N.\n* If JOBZ = 'V' and N > 1, LRWORK must be at least\n* 1 + 5*N + 2*N**2.\n*\n* If LRWORK = -1, then a workspace query is assumed; the\n* routine only calculates the required sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n* On exit, if INFO = 0, IWORK(1) returns the required LIWORK.\n*\n* LIWORK (input) INTEGER\n* The dimension of array IWORK.\n* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.\n* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.\n*\n* If LIWORK = -1, then a workspace query is assumed; the\n* routine only calculates the required sizes of the WORK, RWORK\n* and IWORK arrays, returns these values as the first entries\n* of the WORK, RWORK and IWORK arrays, and no error message\n* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* > 0: if INFO = i, the algorithm failed to converge; i\n* off-diagonal elements of an intermediate tridiagonal\n* form did not converge to zero.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, work, rwork, iwork, info, ap = NumRu::Lapack.zhpevd( jobz, uplo, ap, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_jobz = argv[0];
rblapack_uplo = argv[1];
rblapack_ap = argv[2];
if (argc == 6) {
rblapack_lwork = argv[3];
rblapack_lrwork = argv[4];
rblapack_liwork = argv[5];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
rblapack_lrwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lrwork")));
rblapack_liwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("liwork")));
} else {
rblapack_lwork = Qnil;
rblapack_lrwork = Qnil;
rblapack_liwork = Qnil;
}
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (3th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (3th argument) must be %d", 1);
ldap = NA_SHAPE0(rblapack_ap);
if (NA_TYPE(rblapack_ap) != NA_DCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_DCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, doublecomplex*);
n = ((int)sqrtf(ldap*8+1.0f)-1)/2;
uplo = StringValueCStr(rblapack_uplo)[0];
if (rblapack_lrwork == Qnil)
lrwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n : lsame_(&jobz,"V") ? 1+5*n+2*n*n : 0;
else {
lrwork = NUM2INT(rblapack_lrwork);
}
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
if (rblapack_lwork == Qnil)
lwork = n<=1 ? 1 : lsame_(&jobz,"N") ? n : lsame_(&jobz,"V") ? 2*n : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
if (rblapack_liwork == Qnil)
liwork = (lsame_(&jobz,"N")||n<=1) ? 1 : lsame_(&jobz,"V") ? 3+5*n : 0;
else {
liwork = NUM2INT(rblapack_liwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lrwork);
rblapack_rwork = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
rwork = NA_PTR_TYPE(rblapack_rwork, doublereal*);
{
na_shape_t shape[1];
shape[0] = MAX(1,liwork);
rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
}
iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
{
na_shape_t shape[1];
shape[0] = ldap;
rblapack_ap_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, doublecomplex*);
MEMCPY(ap_out__, ap, doublecomplex, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
zhpevd_(&jobz, &uplo, &n, ap, w, z, &ldz, work, &lwork, rwork, &lrwork, iwork, &liwork, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(7, rblapack_w, rblapack_z, rblapack_work, rblapack_rwork, rblapack_iwork, rblapack_info, rblapack_ap);
}
void
init_lapack_zhpevd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhpevd", rblapack_zhpevd, -1);
}
|