1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#include "rb_lapack.h"
extern VOID zhpgv_(integer* itype, char* jobz, char* uplo, integer* n, doublecomplex* ap, doublecomplex* bp, doublereal* w, doublecomplex* z, integer* ldz, doublecomplex* work, doublereal* rwork, integer* info);
static VALUE
rblapack_zhpgv(int argc, VALUE *argv, VALUE self){
VALUE rblapack_itype;
integer itype;
VALUE rblapack_jobz;
char jobz;
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_ap;
doublecomplex *ap;
VALUE rblapack_bp;
doublecomplex *bp;
VALUE rblapack_w;
doublereal *w;
VALUE rblapack_z;
doublecomplex *z;
VALUE rblapack_info;
integer info;
VALUE rblapack_ap_out__;
doublecomplex *ap_out__;
VALUE rblapack_bp_out__;
doublecomplex *bp_out__;
doublecomplex *work;
doublereal *rwork;
integer ldap;
integer n;
integer ldz;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ap, bp = NumRu::Lapack.zhpgv( itype, jobz, uplo, ap, bp, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, RWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZHPGV computes all the eigenvalues and, optionally, the eigenvectors\n* of a complex generalized Hermitian-definite eigenproblem, of the form\n* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.\n* Here A and B are assumed to be Hermitian, stored in packed format,\n* and B is also positive definite.\n*\n\n* Arguments\n* =========\n*\n* ITYPE (input) INTEGER\n* Specifies the problem type to be solved:\n* = 1: A*x = (lambda)*B*x\n* = 2: A*B*x = (lambda)*x\n* = 3: B*A*x = (lambda)*x\n*\n* JOBZ (input) CHARACTER*1\n* = 'N': Compute eigenvalues only;\n* = 'V': Compute eigenvalues and eigenvectors.\n*\n* UPLO (input) CHARACTER*1\n* = 'U': Upper triangles of A and B are stored;\n* = 'L': Lower triangles of A and B are stored.\n*\n* N (input) INTEGER\n* The order of the matrices A and B. N >= 0.\n*\n* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the Hermitian matrix\n* A, packed columnwise in a linear array. The j-th column of A\n* is stored in the array AP as follows:\n* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n*\n* On exit, the contents of AP are destroyed.\n*\n* BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)\n* On entry, the upper or lower triangle of the Hermitian matrix\n* B, packed columnwise in a linear array. The j-th column of B\n* is stored in the array BP as follows:\n* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;\n* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.\n*\n* On exit, the triangular factor U or L from the Cholesky\n* factorization B = U**H*U or B = L*L**H, in the same storage\n* format as B.\n*\n* W (output) DOUBLE PRECISION array, dimension (N)\n* If INFO = 0, the eigenvalues in ascending order.\n*\n* Z (output) COMPLEX*16 array, dimension (LDZ, N)\n* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n* eigenvectors. The eigenvectors are normalized as follows:\n* if ITYPE = 1 or 2, Z**H*B*Z = I;\n* if ITYPE = 3, Z**H*inv(B)*Z = I.\n* If JOBZ = 'N', then Z is not referenced.\n*\n* LDZ (input) INTEGER\n* The leading dimension of the array Z. LDZ >= 1, and if\n* JOBZ = 'V', LDZ >= max(1,N).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: ZPPTRF or ZHPEV returned an error code:\n* <= N: if INFO = i, ZHPEV failed to converge;\n* i off-diagonal elements of an intermediate\n* tridiagonal form did not convergeto zero;\n* > N: if INFO = N + i, for 1 <= i <= n, then the leading\n* minor of order i of B is not positive definite.\n* The factorization of B could not be completed and\n* no eigenvalues or eigenvectors were computed.\n*\n\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL UPPER, WANTZ\n CHARACTER TRANS\n INTEGER J, NEIG\n* ..\n* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n* ..\n* .. External Subroutines ..\n EXTERNAL XERBLA, ZHPEV, ZHPGST, ZPPTRF, ZTPMV, ZTPSV\n* ..\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, z, info, ap, bp = NumRu::Lapack.zhpgv( itype, jobz, uplo, ap, bp, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_itype = argv[0];
rblapack_jobz = argv[1];
rblapack_uplo = argv[2];
rblapack_ap = argv[3];
rblapack_bp = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
itype = NUM2INT(rblapack_itype);
uplo = StringValueCStr(rblapack_uplo)[0];
jobz = StringValueCStr(rblapack_jobz)[0];
if (!NA_IsNArray(rblapack_ap))
rb_raise(rb_eArgError, "ap (4th argument) must be NArray");
if (NA_RANK(rblapack_ap) != 1)
rb_raise(rb_eArgError, "rank of ap (4th argument) must be %d", 1);
ldap = NA_SHAPE0(rblapack_ap);
if (NA_TYPE(rblapack_ap) != NA_DCOMPLEX)
rblapack_ap = na_change_type(rblapack_ap, NA_DCOMPLEX);
ap = NA_PTR_TYPE(rblapack_ap, doublecomplex*);
n = ((int)sqrtf(ldap*8+1.0f)-1)/2;
if (!NA_IsNArray(rblapack_bp))
rb_raise(rb_eArgError, "bp (5th argument) must be NArray");
if (NA_RANK(rblapack_bp) != 1)
rb_raise(rb_eArgError, "rank of bp (5th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_bp) != (n*(n+1)/2))
rb_raise(rb_eRuntimeError, "shape 0 of bp must be %d", n*(n+1)/2);
if (NA_TYPE(rblapack_bp) != NA_DCOMPLEX)
rblapack_bp = na_change_type(rblapack_bp, NA_DCOMPLEX);
bp = NA_PTR_TYPE(rblapack_bp, doublecomplex*);
ldz = lsame_(&jobz,"V") ? MAX(1,n) : 1;
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DFLOAT, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublereal*);
{
na_shape_t shape[2];
shape[0] = ldz;
shape[1] = n;
rblapack_z = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
z = NA_PTR_TYPE(rblapack_z, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = ldap;
rblapack_ap_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
ap_out__ = NA_PTR_TYPE(rblapack_ap_out__, doublecomplex*);
MEMCPY(ap_out__, ap, doublecomplex, NA_TOTAL(rblapack_ap));
rblapack_ap = rblapack_ap_out__;
ap = ap_out__;
{
na_shape_t shape[1];
shape[0] = n*(n+1)/2;
rblapack_bp_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
bp_out__ = NA_PTR_TYPE(rblapack_bp_out__, doublecomplex*);
MEMCPY(bp_out__, bp, doublecomplex, NA_TOTAL(rblapack_bp));
rblapack_bp = rblapack_bp_out__;
bp = bp_out__;
work = ALLOC_N(doublecomplex, (MAX(1, 2*n-1)));
rwork = ALLOC_N(doublereal, (MAX(1, 3*n-2)));
zhpgv_(&itype, &jobz, &uplo, &n, ap, bp, w, z, &ldz, work, rwork, &info);
free(work);
free(rwork);
rblapack_info = INT2NUM(info);
return rb_ary_new3(5, rblapack_w, rblapack_z, rblapack_info, rblapack_ap, rblapack_bp);
}
void
init_lapack_zhpgv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhpgv", rblapack_zhpgv, -1);
}
|