File: zhsein.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (185 lines) | stat: -rw-r--r-- 12,403 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include "rb_lapack.h"

extern VOID zhsein_(char* side, char* eigsrc, char* initv, logical* select, integer* n, doublecomplex* h, integer* ldh, doublecomplex* w, doublecomplex* vl, integer* ldvl, doublecomplex* vr, integer* ldvr, integer* mm, integer* m, doublecomplex* work, doublereal* rwork, integer* ifaill, integer* ifailr, integer* info);


static VALUE
rblapack_zhsein(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_side;
  char side; 
  VALUE rblapack_eigsrc;
  char eigsrc; 
  VALUE rblapack_initv;
  char initv; 
  VALUE rblapack_select;
  logical *select; 
  VALUE rblapack_h;
  doublecomplex *h; 
  VALUE rblapack_w;
  doublecomplex *w; 
  VALUE rblapack_vl;
  doublecomplex *vl; 
  VALUE rblapack_vr;
  doublecomplex *vr; 
  VALUE rblapack_m;
  integer m; 
  VALUE rblapack_ifaill;
  integer *ifaill; 
  VALUE rblapack_ifailr;
  integer *ifailr; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack_w_out__;
  doublecomplex *w_out__;
  VALUE rblapack_vl_out__;
  doublecomplex *vl_out__;
  VALUE rblapack_vr_out__;
  doublecomplex *vr_out__;
  doublecomplex *work;
  doublereal *rwork;

  integer n;
  integer ldh;
  integer ldvl;
  integer mm;
  integer ldvr;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, ifaill, ifailr, info, w, vl, vr = NumRu::Lapack.zhsein( side, eigsrc, initv, select, h, w, vl, vr, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO )\n\n*  Purpose\n*  =======\n*\n*  ZHSEIN uses inverse iteration to find specified right and/or left\n*  eigenvectors of a complex upper Hessenberg matrix H.\n*\n*  The right eigenvector x and the left eigenvector y of the matrix H\n*  corresponding to an eigenvalue w are defined by:\n*\n*               H * x = w * x,     y**h * H = w * y**h\n*\n*  where y**h denotes the conjugate transpose of the vector y.\n*\n\n*  Arguments\n*  =========\n*\n*  SIDE    (input) CHARACTER*1\n*          = 'R': compute right eigenvectors only;\n*          = 'L': compute left eigenvectors only;\n*          = 'B': compute both right and left eigenvectors.\n*\n*  EIGSRC  (input) CHARACTER*1\n*          Specifies the source of eigenvalues supplied in W:\n*          = 'Q': the eigenvalues were found using ZHSEQR; thus, if\n*                 H has zero subdiagonal elements, and so is\n*                 block-triangular, then the j-th eigenvalue can be\n*                 assumed to be an eigenvalue of the block containing\n*                 the j-th row/column.  This property allows ZHSEIN to\n*                 perform inverse iteration on just one diagonal block.\n*          = 'N': no assumptions are made on the correspondence\n*                 between eigenvalues and diagonal blocks.  In this\n*                 case, ZHSEIN must always perform inverse iteration\n*                 using the whole matrix H.\n*\n*  INITV   (input) CHARACTER*1\n*          = 'N': no initial vectors are supplied;\n*          = 'U': user-supplied initial vectors are stored in the arrays\n*                 VL and/or VR.\n*\n*  SELECT  (input) LOGICAL array, dimension (N)\n*          Specifies the eigenvectors to be computed. To select the\n*          eigenvector corresponding to the eigenvalue W(j),\n*          SELECT(j) must be set to .TRUE..\n*\n*  N       (input) INTEGER\n*          The order of the matrix H.  N >= 0.\n*\n*  H       (input) COMPLEX*16 array, dimension (LDH,N)\n*          The upper Hessenberg matrix H.\n*\n*  LDH     (input) INTEGER\n*          The leading dimension of the array H.  LDH >= max(1,N).\n*\n*  W       (input/output) COMPLEX*16 array, dimension (N)\n*          On entry, the eigenvalues of H.\n*          On exit, the real parts of W may have been altered since\n*          close eigenvalues are perturbed slightly in searching for\n*          independent eigenvectors.\n*\n*  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)\n*          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must\n*          contain starting vectors for the inverse iteration for the\n*          left eigenvectors; the starting vector for each eigenvector\n*          must be in the same column in which the eigenvector will be\n*          stored.\n*          On exit, if SIDE = 'L' or 'B', the left eigenvectors\n*          specified by SELECT will be stored consecutively in the\n*          columns of VL, in the same order as their eigenvalues.\n*          If SIDE = 'R', VL is not referenced.\n*\n*  LDVL    (input) INTEGER\n*          The leading dimension of the array VL.\n*          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.\n*\n*  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)\n*          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must\n*          contain starting vectors for the inverse iteration for the\n*          right eigenvectors; the starting vector for each eigenvector\n*          must be in the same column in which the eigenvector will be\n*          stored.\n*          On exit, if SIDE = 'R' or 'B', the right eigenvectors\n*          specified by SELECT will be stored consecutively in the\n*          columns of VR, in the same order as their eigenvalues.\n*          If SIDE = 'L', VR is not referenced.\n*\n*  LDVR    (input) INTEGER\n*          The leading dimension of the array VR.\n*          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.\n*\n*  MM      (input) INTEGER\n*          The number of columns in the arrays VL and/or VR. MM >= M.\n*\n*  M       (output) INTEGER\n*          The number of columns in the arrays VL and/or VR required to\n*          store the eigenvectors (= the number of .TRUE. elements in\n*          SELECT).\n*\n*  WORK    (workspace) COMPLEX*16 array, dimension (N*N)\n*\n*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)\n*\n*  IFAILL  (output) INTEGER array, dimension (MM)\n*          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left\n*          eigenvector in the i-th column of VL (corresponding to the\n*          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the\n*          eigenvector converged satisfactorily.\n*          If SIDE = 'R', IFAILL is not referenced.\n*\n*  IFAILR  (output) INTEGER array, dimension (MM)\n*          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right\n*          eigenvector in the i-th column of VR (corresponding to the\n*          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the\n*          eigenvector converged satisfactorily.\n*          If SIDE = 'L', IFAILR is not referenced.\n*\n*  INFO    (output) INTEGER\n*          = 0:  successful exit\n*          < 0:  if INFO = -i, the i-th argument had an illegal value\n*          > 0:  if INFO = i, i is the number of eigenvectors which\n*                failed to converge; see IFAILL and IFAILR for further\n*                details.\n*\n\n*  Further Details\n*  ===============\n*\n*  Each eigenvector is normalized so that the element of largest\n*  magnitude has magnitude 1; here the magnitude of a complex number\n*  (x,y) is taken to be |x|+|y|.\n*\n*  =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  m, ifaill, ifailr, info, w, vl, vr = NumRu::Lapack.zhsein( side, eigsrc, initv, select, h, w, vl, vr, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_side = argv[0];
  rblapack_eigsrc = argv[1];
  rblapack_initv = argv[2];
  rblapack_select = argv[3];
  rblapack_h = argv[4];
  rblapack_w = argv[5];
  rblapack_vl = argv[6];
  rblapack_vr = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  side = StringValueCStr(rblapack_side)[0];
  initv = StringValueCStr(rblapack_initv)[0];
  if (!NA_IsNArray(rblapack_h))
    rb_raise(rb_eArgError, "h (5th argument) must be NArray");
  if (NA_RANK(rblapack_h) != 2)
    rb_raise(rb_eArgError, "rank of h (5th argument) must be %d", 2);
  ldh = NA_SHAPE0(rblapack_h);
  n = NA_SHAPE1(rblapack_h);
  if (NA_TYPE(rblapack_h) != NA_DCOMPLEX)
    rblapack_h = na_change_type(rblapack_h, NA_DCOMPLEX);
  h = NA_PTR_TYPE(rblapack_h, doublecomplex*);
  if (!NA_IsNArray(rblapack_vl))
    rb_raise(rb_eArgError, "vl (7th argument) must be NArray");
  if (NA_RANK(rblapack_vl) != 2)
    rb_raise(rb_eArgError, "rank of vl (7th argument) must be %d", 2);
  ldvl = NA_SHAPE0(rblapack_vl);
  mm = NA_SHAPE1(rblapack_vl);
  if (NA_TYPE(rblapack_vl) != NA_DCOMPLEX)
    rblapack_vl = na_change_type(rblapack_vl, NA_DCOMPLEX);
  vl = NA_PTR_TYPE(rblapack_vl, doublecomplex*);
  eigsrc = StringValueCStr(rblapack_eigsrc)[0];
  if (!NA_IsNArray(rblapack_w))
    rb_raise(rb_eArgError, "w (6th argument) must be NArray");
  if (NA_RANK(rblapack_w) != 1)
    rb_raise(rb_eArgError, "rank of w (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_w) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 1 of h");
  if (NA_TYPE(rblapack_w) != NA_DCOMPLEX)
    rblapack_w = na_change_type(rblapack_w, NA_DCOMPLEX);
  w = NA_PTR_TYPE(rblapack_w, doublecomplex*);
  if (!NA_IsNArray(rblapack_select))
    rb_raise(rb_eArgError, "select (4th argument) must be NArray");
  if (NA_RANK(rblapack_select) != 1)
    rb_raise(rb_eArgError, "rank of select (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_select) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of select must be the same as shape 1 of h");
  if (NA_TYPE(rblapack_select) != NA_LINT)
    rblapack_select = na_change_type(rblapack_select, NA_LINT);
  select = NA_PTR_TYPE(rblapack_select, logical*);
  if (!NA_IsNArray(rblapack_vr))
    rb_raise(rb_eArgError, "vr (8th argument) must be NArray");
  if (NA_RANK(rblapack_vr) != 2)
    rb_raise(rb_eArgError, "rank of vr (8th argument) must be %d", 2);
  ldvr = NA_SHAPE0(rblapack_vr);
  if (NA_SHAPE1(rblapack_vr) != mm)
    rb_raise(rb_eRuntimeError, "shape 1 of vr must be the same as shape 1 of vl");
  if (NA_TYPE(rblapack_vr) != NA_DCOMPLEX)
    rblapack_vr = na_change_type(rblapack_vr, NA_DCOMPLEX);
  vr = NA_PTR_TYPE(rblapack_vr, doublecomplex*);
  {
    na_shape_t shape[1];
    shape[0] = mm;
    rblapack_ifaill = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ifaill = NA_PTR_TYPE(rblapack_ifaill, integer*);
  {
    na_shape_t shape[1];
    shape[0] = mm;
    rblapack_ifailr = na_make_object(NA_LINT, 1, shape, cNArray);
  }
  ifailr = NA_PTR_TYPE(rblapack_ifailr, integer*);
  {
    na_shape_t shape[1];
    shape[0] = n;
    rblapack_w_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  w_out__ = NA_PTR_TYPE(rblapack_w_out__, doublecomplex*);
  MEMCPY(w_out__, w, doublecomplex, NA_TOTAL(rblapack_w));
  rblapack_w = rblapack_w_out__;
  w = w_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldvl;
    shape[1] = mm;
    rblapack_vl_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vl_out__ = NA_PTR_TYPE(rblapack_vl_out__, doublecomplex*);
  MEMCPY(vl_out__, vl, doublecomplex, NA_TOTAL(rblapack_vl));
  rblapack_vl = rblapack_vl_out__;
  vl = vl_out__;
  {
    na_shape_t shape[2];
    shape[0] = ldvr;
    shape[1] = mm;
    rblapack_vr_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
  }
  vr_out__ = NA_PTR_TYPE(rblapack_vr_out__, doublecomplex*);
  MEMCPY(vr_out__, vr, doublecomplex, NA_TOTAL(rblapack_vr));
  rblapack_vr = rblapack_vr_out__;
  vr = vr_out__;
  work = ALLOC_N(doublecomplex, (n*n));
  rwork = ALLOC_N(doublereal, (n));

  zhsein_(&side, &eigsrc, &initv, select, &n, h, &ldh, w, vl, &ldvl, vr, &ldvr, &mm, &m, work, rwork, ifaill, ifailr, &info);

  free(work);
  free(rwork);
  rblapack_m = INT2NUM(m);
  rblapack_info = INT2NUM(info);
  return rb_ary_new3(7, rblapack_m, rblapack_ifaill, rblapack_ifailr, rblapack_info, rblapack_w, rblapack_vl, rblapack_vr);
}

void
init_lapack_zhsein(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zhsein", rblapack_zhsein, -1);
}