1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#include "rb_lapack.h"
extern VOID zhsein_(char* side, char* eigsrc, char* initv, logical* select, integer* n, doublecomplex* h, integer* ldh, doublecomplex* w, doublecomplex* vl, integer* ldvl, doublecomplex* vr, integer* ldvr, integer* mm, integer* m, doublecomplex* work, doublereal* rwork, integer* ifaill, integer* ifailr, integer* info);
static VALUE
rblapack_zhsein(int argc, VALUE *argv, VALUE self){
VALUE rblapack_side;
char side;
VALUE rblapack_eigsrc;
char eigsrc;
VALUE rblapack_initv;
char initv;
VALUE rblapack_select;
logical *select;
VALUE rblapack_h;
doublecomplex *h;
VALUE rblapack_w;
doublecomplex *w;
VALUE rblapack_vl;
doublecomplex *vl;
VALUE rblapack_vr;
doublecomplex *vr;
VALUE rblapack_m;
integer m;
VALUE rblapack_ifaill;
integer *ifaill;
VALUE rblapack_ifailr;
integer *ifailr;
VALUE rblapack_info;
integer info;
VALUE rblapack_w_out__;
doublecomplex *w_out__;
VALUE rblapack_vl_out__;
doublecomplex *vl_out__;
VALUE rblapack_vr_out__;
doublecomplex *vr_out__;
doublecomplex *work;
doublereal *rwork;
integer n;
integer ldh;
integer ldvl;
integer mm;
integer ldvr;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n m, ifaill, ifailr, info, w, vl, vr = NumRu::Lapack.zhsein( side, eigsrc, initv, select, h, w, vl, vr, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO )\n\n* Purpose\n* =======\n*\n* ZHSEIN uses inverse iteration to find specified right and/or left\n* eigenvectors of a complex upper Hessenberg matrix H.\n*\n* The right eigenvector x and the left eigenvector y of the matrix H\n* corresponding to an eigenvalue w are defined by:\n*\n* H * x = w * x, y**h * H = w * y**h\n*\n* where y**h denotes the conjugate transpose of the vector y.\n*\n\n* Arguments\n* =========\n*\n* SIDE (input) CHARACTER*1\n* = 'R': compute right eigenvectors only;\n* = 'L': compute left eigenvectors only;\n* = 'B': compute both right and left eigenvectors.\n*\n* EIGSRC (input) CHARACTER*1\n* Specifies the source of eigenvalues supplied in W:\n* = 'Q': the eigenvalues were found using ZHSEQR; thus, if\n* H has zero subdiagonal elements, and so is\n* block-triangular, then the j-th eigenvalue can be\n* assumed to be an eigenvalue of the block containing\n* the j-th row/column. This property allows ZHSEIN to\n* perform inverse iteration on just one diagonal block.\n* = 'N': no assumptions are made on the correspondence\n* between eigenvalues and diagonal blocks. In this\n* case, ZHSEIN must always perform inverse iteration\n* using the whole matrix H.\n*\n* INITV (input) CHARACTER*1\n* = 'N': no initial vectors are supplied;\n* = 'U': user-supplied initial vectors are stored in the arrays\n* VL and/or VR.\n*\n* SELECT (input) LOGICAL array, dimension (N)\n* Specifies the eigenvectors to be computed. To select the\n* eigenvector corresponding to the eigenvalue W(j),\n* SELECT(j) must be set to .TRUE..\n*\n* N (input) INTEGER\n* The order of the matrix H. N >= 0.\n*\n* H (input) COMPLEX*16 array, dimension (LDH,N)\n* The upper Hessenberg matrix H.\n*\n* LDH (input) INTEGER\n* The leading dimension of the array H. LDH >= max(1,N).\n*\n* W (input/output) COMPLEX*16 array, dimension (N)\n* On entry, the eigenvalues of H.\n* On exit, the real parts of W may have been altered since\n* close eigenvalues are perturbed slightly in searching for\n* independent eigenvectors.\n*\n* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM)\n* On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must\n* contain starting vectors for the inverse iteration for the\n* left eigenvectors; the starting vector for each eigenvector\n* must be in the same column in which the eigenvector will be\n* stored.\n* On exit, if SIDE = 'L' or 'B', the left eigenvectors\n* specified by SELECT will be stored consecutively in the\n* columns of VL, in the same order as their eigenvalues.\n* If SIDE = 'R', VL is not referenced.\n*\n* LDVL (input) INTEGER\n* The leading dimension of the array VL.\n* LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.\n*\n* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM)\n* On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must\n* contain starting vectors for the inverse iteration for the\n* right eigenvectors; the starting vector for each eigenvector\n* must be in the same column in which the eigenvector will be\n* stored.\n* On exit, if SIDE = 'R' or 'B', the right eigenvectors\n* specified by SELECT will be stored consecutively in the\n* columns of VR, in the same order as their eigenvalues.\n* If SIDE = 'L', VR is not referenced.\n*\n* LDVR (input) INTEGER\n* The leading dimension of the array VR.\n* LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.\n*\n* MM (input) INTEGER\n* The number of columns in the arrays VL and/or VR. MM >= M.\n*\n* M (output) INTEGER\n* The number of columns in the arrays VL and/or VR required to\n* store the eigenvectors (= the number of .TRUE. elements in\n* SELECT).\n*\n* WORK (workspace) COMPLEX*16 array, dimension (N*N)\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* IFAILL (output) INTEGER array, dimension (MM)\n* If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left\n* eigenvector in the i-th column of VL (corresponding to the\n* eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the\n* eigenvector converged satisfactorily.\n* If SIDE = 'R', IFAILL is not referenced.\n*\n* IFAILR (output) INTEGER array, dimension (MM)\n* If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right\n* eigenvector in the i-th column of VR (corresponding to the\n* eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the\n* eigenvector converged satisfactorily.\n* If SIDE = 'L', IFAILR is not referenced.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, i is the number of eigenvectors which\n* failed to converge; see IFAILL and IFAILR for further\n* details.\n*\n\n* Further Details\n* ===============\n*\n* Each eigenvector is normalized so that the element of largest\n* magnitude has magnitude 1; here the magnitude of a complex number\n* (x,y) is taken to be |x|+|y|.\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n m, ifaill, ifailr, info, w, vl, vr = NumRu::Lapack.zhsein( side, eigsrc, initv, select, h, w, vl, vr, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 8 && argc != 8)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
rblapack_side = argv[0];
rblapack_eigsrc = argv[1];
rblapack_initv = argv[2];
rblapack_select = argv[3];
rblapack_h = argv[4];
rblapack_w = argv[5];
rblapack_vl = argv[6];
rblapack_vr = argv[7];
if (argc == 8) {
} else if (rblapack_options != Qnil) {
} else {
}
side = StringValueCStr(rblapack_side)[0];
initv = StringValueCStr(rblapack_initv)[0];
if (!NA_IsNArray(rblapack_h))
rb_raise(rb_eArgError, "h (5th argument) must be NArray");
if (NA_RANK(rblapack_h) != 2)
rb_raise(rb_eArgError, "rank of h (5th argument) must be %d", 2);
ldh = NA_SHAPE0(rblapack_h);
n = NA_SHAPE1(rblapack_h);
if (NA_TYPE(rblapack_h) != NA_DCOMPLEX)
rblapack_h = na_change_type(rblapack_h, NA_DCOMPLEX);
h = NA_PTR_TYPE(rblapack_h, doublecomplex*);
if (!NA_IsNArray(rblapack_vl))
rb_raise(rb_eArgError, "vl (7th argument) must be NArray");
if (NA_RANK(rblapack_vl) != 2)
rb_raise(rb_eArgError, "rank of vl (7th argument) must be %d", 2);
ldvl = NA_SHAPE0(rblapack_vl);
mm = NA_SHAPE1(rblapack_vl);
if (NA_TYPE(rblapack_vl) != NA_DCOMPLEX)
rblapack_vl = na_change_type(rblapack_vl, NA_DCOMPLEX);
vl = NA_PTR_TYPE(rblapack_vl, doublecomplex*);
eigsrc = StringValueCStr(rblapack_eigsrc)[0];
if (!NA_IsNArray(rblapack_w))
rb_raise(rb_eArgError, "w (6th argument) must be NArray");
if (NA_RANK(rblapack_w) != 1)
rb_raise(rb_eArgError, "rank of w (6th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_w) != n)
rb_raise(rb_eRuntimeError, "shape 0 of w must be the same as shape 1 of h");
if (NA_TYPE(rblapack_w) != NA_DCOMPLEX)
rblapack_w = na_change_type(rblapack_w, NA_DCOMPLEX);
w = NA_PTR_TYPE(rblapack_w, doublecomplex*);
if (!NA_IsNArray(rblapack_select))
rb_raise(rb_eArgError, "select (4th argument) must be NArray");
if (NA_RANK(rblapack_select) != 1)
rb_raise(rb_eArgError, "rank of select (4th argument) must be %d", 1);
if (NA_SHAPE0(rblapack_select) != n)
rb_raise(rb_eRuntimeError, "shape 0 of select must be the same as shape 1 of h");
if (NA_TYPE(rblapack_select) != NA_LINT)
rblapack_select = na_change_type(rblapack_select, NA_LINT);
select = NA_PTR_TYPE(rblapack_select, logical*);
if (!NA_IsNArray(rblapack_vr))
rb_raise(rb_eArgError, "vr (8th argument) must be NArray");
if (NA_RANK(rblapack_vr) != 2)
rb_raise(rb_eArgError, "rank of vr (8th argument) must be %d", 2);
ldvr = NA_SHAPE0(rblapack_vr);
if (NA_SHAPE1(rblapack_vr) != mm)
rb_raise(rb_eRuntimeError, "shape 1 of vr must be the same as shape 1 of vl");
if (NA_TYPE(rblapack_vr) != NA_DCOMPLEX)
rblapack_vr = na_change_type(rblapack_vr, NA_DCOMPLEX);
vr = NA_PTR_TYPE(rblapack_vr, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = mm;
rblapack_ifaill = na_make_object(NA_LINT, 1, shape, cNArray);
}
ifaill = NA_PTR_TYPE(rblapack_ifaill, integer*);
{
na_shape_t shape[1];
shape[0] = mm;
rblapack_ifailr = na_make_object(NA_LINT, 1, shape, cNArray);
}
ifailr = NA_PTR_TYPE(rblapack_ifailr, integer*);
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
w_out__ = NA_PTR_TYPE(rblapack_w_out__, doublecomplex*);
MEMCPY(w_out__, w, doublecomplex, NA_TOTAL(rblapack_w));
rblapack_w = rblapack_w_out__;
w = w_out__;
{
na_shape_t shape[2];
shape[0] = ldvl;
shape[1] = mm;
rblapack_vl_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
vl_out__ = NA_PTR_TYPE(rblapack_vl_out__, doublecomplex*);
MEMCPY(vl_out__, vl, doublecomplex, NA_TOTAL(rblapack_vl));
rblapack_vl = rblapack_vl_out__;
vl = vl_out__;
{
na_shape_t shape[2];
shape[0] = ldvr;
shape[1] = mm;
rblapack_vr_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
vr_out__ = NA_PTR_TYPE(rblapack_vr_out__, doublecomplex*);
MEMCPY(vr_out__, vr, doublecomplex, NA_TOTAL(rblapack_vr));
rblapack_vr = rblapack_vr_out__;
vr = vr_out__;
work = ALLOC_N(doublecomplex, (n*n));
rwork = ALLOC_N(doublereal, (n));
zhsein_(&side, &eigsrc, &initv, select, &n, h, &ldh, w, vl, &ldvl, vr, &ldvr, &mm, &m, work, rwork, ifaill, ifailr, &info);
free(work);
free(rwork);
rblapack_m = INT2NUM(m);
rblapack_info = INT2NUM(info);
return rb_ary_new3(7, rblapack_m, rblapack_ifaill, rblapack_ifailr, rblapack_info, rblapack_w, rblapack_vl, rblapack_vr);
}
void
init_lapack_zhsein(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zhsein", rblapack_zhsein, -1);
}
|