File: zla_gercond_x.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (130 lines) | stat: -rw-r--r-- 7,628 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include "rb_lapack.h"

extern doublereal zla_gercond_x_(char* trans, integer* n, doublecomplex* a, integer* lda, doublecomplex* af, integer* ldaf, integer* ipiv, doublecomplex* x, integer* info, doublecomplex* work, doublereal* rwork);


static VALUE
rblapack_zla_gercond_x(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_trans;
  char trans; 
  VALUE rblapack_a;
  doublecomplex *a; 
  VALUE rblapack_af;
  doublecomplex *af; 
  VALUE rblapack_ipiv;
  integer *ipiv; 
  VALUE rblapack_x;
  doublecomplex *x; 
  VALUE rblapack_work;
  doublecomplex *work; 
  VALUE rblapack_rwork;
  doublereal *rwork; 
  VALUE rblapack_info;
  integer info; 
  VALUE rblapack___out__;
  doublereal __out__; 

  integer lda;
  integer n;
  integer ldaf;

  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, __out__ = NumRu::Lapack.zla_gercond_x( trans, a, af, ipiv, x, work, rwork, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      DOUBLE PRECISION FUNCTION ZLA_GERCOND_X( TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK )\n\n*  Purpose\n*  =======\n*\n*     ZLA_GERCOND_X computes the infinity norm condition number of\n*     op(A) * diag(X) where X is a COMPLEX*16 vector.\n*\n\n*  Arguments\n*  =========\n*\n*     TRANS   (input) CHARACTER*1\n*     Specifies the form of the system of equations:\n*       = 'N':  A * X = B     (No transpose)\n*       = 'T':  A**T * X = B  (Transpose)\n*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)\n*\n*     N       (input) INTEGER\n*     The number of linear equations, i.e., the order of the\n*     matrix A.  N >= 0.\n*\n*     A       (input) COMPLEX*16 array, dimension (LDA,N)\n*     On entry, the N-by-N matrix A.\n*\n*     LDA     (input) INTEGER\n*     The leading dimension of the array A.  LDA >= max(1,N).\n*\n*     AF      (input) COMPLEX*16 array, dimension (LDAF,N)\n*     The factors L and U from the factorization\n*     A = P*L*U as computed by ZGETRF.\n*\n*     LDAF    (input) INTEGER\n*     The leading dimension of the array AF.  LDAF >= max(1,N).\n*\n*     IPIV    (input) INTEGER array, dimension (N)\n*     The pivot indices from the factorization A = P*L*U\n*     as computed by ZGETRF; row i of the matrix was interchanged\n*     with row IPIV(i).\n*\n*     X       (input) COMPLEX*16 array, dimension (N)\n*     The vector X in the formula op(A) * diag(X).\n*\n*     INFO    (output) INTEGER\n*       = 0:  Successful exit.\n*     i > 0:  The ith argument is invalid.\n*\n*     WORK    (input) COMPLEX*16 array, dimension (2*N).\n*     Workspace.\n*\n*     RWORK   (input) DOUBLE PRECISION array, dimension (N).\n*     Workspace.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      LOGICAL            NOTRANS\n      INTEGER            KASE\n      DOUBLE PRECISION   AINVNM, ANORM, TMP\n      INTEGER            I, J\n      COMPLEX*16         ZDUM\n*     ..\n*     .. Local Arrays ..\n      INTEGER            ISAVE( 3 )\n*     ..\n*     .. External Functions ..\n      LOGICAL            LSAME\n      EXTERNAL           LSAME\n*     ..\n*     .. External Subroutines ..\n      EXTERNAL           ZLACN2, ZGETRS, XERBLA\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          ABS, MAX, REAL, DIMAG\n*     ..\n*     .. Statement Functions ..\n      DOUBLE PRECISION   CABS1\n*     ..\n*     .. Statement Function Definitions ..\n      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  info, __out__ = NumRu::Lapack.zla_gercond_x( trans, a, af, ipiv, x, work, rwork, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 7 && argc != 7)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 7)", argc);
  rblapack_trans = argv[0];
  rblapack_a = argv[1];
  rblapack_af = argv[2];
  rblapack_ipiv = argv[3];
  rblapack_x = argv[4];
  rblapack_work = argv[5];
  rblapack_rwork = argv[6];
  if (argc == 7) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  trans = StringValueCStr(rblapack_trans)[0];
  if (!NA_IsNArray(rblapack_af))
    rb_raise(rb_eArgError, "af (3th argument) must be NArray");
  if (NA_RANK(rblapack_af) != 2)
    rb_raise(rb_eArgError, "rank of af (3th argument) must be %d", 2);
  ldaf = NA_SHAPE0(rblapack_af);
  n = NA_SHAPE1(rblapack_af);
  if (NA_TYPE(rblapack_af) != NA_DCOMPLEX)
    rblapack_af = na_change_type(rblapack_af, NA_DCOMPLEX);
  af = NA_PTR_TYPE(rblapack_af, doublecomplex*);
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (5th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 1)
    rb_raise(rb_eArgError, "rank of x (5th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_x) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of x must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_x) != NA_DCOMPLEX)
    rblapack_x = na_change_type(rblapack_x, NA_DCOMPLEX);
  x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
  if (!NA_IsNArray(rblapack_rwork))
    rb_raise(rb_eArgError, "rwork (7th argument) must be NArray");
  if (NA_RANK(rblapack_rwork) != 1)
    rb_raise(rb_eArgError, "rank of rwork (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_rwork) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of rwork must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_rwork) != NA_DFLOAT)
    rblapack_rwork = na_change_type(rblapack_rwork, NA_DFLOAT);
  rwork = NA_PTR_TYPE(rblapack_rwork, doublereal*);
  if (!NA_IsNArray(rblapack_a))
    rb_raise(rb_eArgError, "a (2th argument) must be NArray");
  if (NA_RANK(rblapack_a) != 2)
    rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
  lda = NA_SHAPE0(rblapack_a);
  if (NA_SHAPE1(rblapack_a) != n)
    rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
    rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
  a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
  if (!NA_IsNArray(rblapack_ipiv))
    rb_raise(rb_eArgError, "ipiv (4th argument) must be NArray");
  if (NA_RANK(rblapack_ipiv) != 1)
    rb_raise(rb_eArgError, "rank of ipiv (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_ipiv) != n)
    rb_raise(rb_eRuntimeError, "shape 0 of ipiv must be the same as shape 1 of af");
  if (NA_TYPE(rblapack_ipiv) != NA_LINT)
    rblapack_ipiv = na_change_type(rblapack_ipiv, NA_LINT);
  ipiv = NA_PTR_TYPE(rblapack_ipiv, integer*);
  if (!NA_IsNArray(rblapack_work))
    rb_raise(rb_eArgError, "work (6th argument) must be NArray");
  if (NA_RANK(rblapack_work) != 1)
    rb_raise(rb_eArgError, "rank of work (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_work) != (2*n))
    rb_raise(rb_eRuntimeError, "shape 0 of work must be %d", 2*n);
  if (NA_TYPE(rblapack_work) != NA_DCOMPLEX)
    rblapack_work = na_change_type(rblapack_work, NA_DCOMPLEX);
  work = NA_PTR_TYPE(rblapack_work, doublecomplex*);

  __out__ = zla_gercond_x_(&trans, &n, a, &lda, af, &ldaf, ipiv, x, &info, work, rwork);

  rblapack_info = INT2NUM(info);
  rblapack___out__ = rb_float_new((double)__out__);
  return rb_ary_new3(2, rblapack_info, rblapack___out__);
}

void
init_lapack_zla_gercond_x(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zla_gercond_x", rblapack_zla_gercond_x, -1);
}