1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
|
#include "rb_lapack.h"
extern VOID zlacrm_(integer* m, integer* n, doublecomplex* a, integer* lda, doublereal* b, integer* ldb, doublecomplex* c, integer* ldc, doublereal* rwork);
static VALUE
rblapack_zlacrm(int argc, VALUE *argv, VALUE self){
VALUE rblapack_m;
integer m;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_b;
doublereal *b;
VALUE rblapack_c;
doublecomplex *c;
doublereal *rwork;
integer lda;
integer n;
integer ldb;
integer ldc;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.zlacrm( m, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLACRM( M, N, A, LDA, B, LDB, C, LDC, RWORK )\n\n* Purpose\n* =======\n*\n* ZLACRM performs a very simple matrix-matrix multiplication:\n* C := A * B,\n* where A is M by N and complex; B is N by N and real;\n* C is M by N and complex.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A and of the matrix C.\n* M >= 0.\n*\n* N (input) INTEGER\n* The number of columns and rows of the matrix B and\n* the number of columns of the matrix C.\n* N >= 0.\n*\n* A (input) COMPLEX*16 array, dimension (LDA, N)\n* A contains the M by N matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >=max(1,M).\n*\n* B (input) DOUBLE PRECISION array, dimension (LDB, N)\n* B contains the N by N matrix B.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >=max(1,N).\n*\n* C (input) COMPLEX*16 array, dimension (LDC, N)\n* C contains the M by N matrix C.\n*\n* LDC (input) INTEGER\n* The leading dimension of the array C. LDC >=max(1,N).\n*\n* RWORK (workspace) DOUBLE PRECISION array, dimension (2*M*N)\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n c = NumRu::Lapack.zlacrm( m, a, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_m = argv[0];
rblapack_a = argv[1];
rblapack_b = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
m = NUM2INT(rblapack_m);
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (3th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (3th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
n = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_DFLOAT)
rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
b = NA_PTR_TYPE(rblapack_b, doublereal*);
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (2th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
if (NA_SHAPE1(rblapack_a) != n)
rb_raise(rb_eRuntimeError, "shape 1 of a must be the same as shape 1 of b");
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
ldc = MAX(1,n);
{
na_shape_t shape[2];
shape[0] = ldc;
shape[1] = n;
rblapack_c = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
c = NA_PTR_TYPE(rblapack_c, doublecomplex*);
rwork = ALLOC_N(doublereal, (2*m*n));
zlacrm_(&m, &n, a, &lda, b, &ldb, c, &ldc, rwork);
free(rwork);
return rblapack_c;
}
void
init_lapack_zlacrm(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zlacrm", rblapack_zlacrm, -1);
}
|