File: zlaev2.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (71 lines) | stat: -rw-r--r-- 4,225 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include "rb_lapack.h"

extern VOID zlaev2_(doublecomplex* a, doublecomplex* b, doublecomplex* c, doublereal* rt1, doublereal* rt2, doublereal* cs1, doublecomplex* sn1);


static VALUE
rblapack_zlaev2(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_a;
  doublecomplex a; 
  VALUE rblapack_b;
  doublecomplex b; 
  VALUE rblapack_c;
  doublecomplex c; 
  VALUE rblapack_rt1;
  doublereal rt1; 
  VALUE rblapack_rt2;
  doublereal rt2; 
  VALUE rblapack_cs1;
  doublereal cs1; 
  VALUE rblapack_sn1;
  doublecomplex sn1; 


  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  rt1, rt2, cs1, sn1 = NumRu::Lapack.zlaev2( a, b, c, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZLAEV2( A, B, C, RT1, RT2, CS1, SN1 )\n\n*  Purpose\n*  =======\n*\n*  ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix\n*     [  A         B  ]\n*     [  CONJG(B)  C  ].\n*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the\n*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right\n*  eigenvector for RT1, giving the decomposition\n*\n*  [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]\n*  [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].\n*\n\n*  Arguments\n*  =========\n*\n*  A      (input) COMPLEX*16\n*         The (1,1) element of the 2-by-2 matrix.\n*\n*  B      (input) COMPLEX*16\n*         The (1,2) element and the conjugate of the (2,1) element of\n*         the 2-by-2 matrix.\n*\n*  C      (input) COMPLEX*16\n*         The (2,2) element of the 2-by-2 matrix.\n*\n*  RT1    (output) DOUBLE PRECISION\n*         The eigenvalue of larger absolute value.\n*\n*  RT2    (output) DOUBLE PRECISION\n*         The eigenvalue of smaller absolute value.\n*\n*  CS1    (output) DOUBLE PRECISION\n*  SN1    (output) COMPLEX*16\n*         The vector (CS1, SN1) is a unit right eigenvector for RT1.\n*\n\n*  Further Details\n*  ===============\n*\n*  RT1 is accurate to a few ulps barring over/underflow.\n*\n*  RT2 may be inaccurate if there is massive cancellation in the\n*  determinant A*C-B*B; higher precision or correctly rounded or\n*  correctly truncated arithmetic would be needed to compute RT2\n*  accurately in all cases.\n*\n*  CS1 and SN1 are accurate to a few ulps barring over/underflow.\n*\n*  Overflow is possible only if RT1 is within a factor of 5 of overflow.\n*  Underflow is harmless if the input data is 0 or exceeds\n*     underflow_threshold / macheps.\n*\n* =====================================================================\n*\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  rt1, rt2, cs1, sn1 = NumRu::Lapack.zlaev2( a, b, c, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 3 && argc != 3)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
  rblapack_a = argv[0];
  rblapack_b = argv[1];
  rblapack_c = argv[2];
  if (argc == 3) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  a.r = NUM2DBL(rb_funcall(rblapack_a, rb_intern("real"), 0));
  a.i = NUM2DBL(rb_funcall(rblapack_a, rb_intern("imag"), 0));
  c.r = NUM2DBL(rb_funcall(rblapack_c, rb_intern("real"), 0));
  c.i = NUM2DBL(rb_funcall(rblapack_c, rb_intern("imag"), 0));
  b.r = NUM2DBL(rb_funcall(rblapack_b, rb_intern("real"), 0));
  b.i = NUM2DBL(rb_funcall(rblapack_b, rb_intern("imag"), 0));

  zlaev2_(&a, &b, &c, &rt1, &rt2, &cs1, &sn1);

  rblapack_rt1 = rb_float_new((double)rt1);
  rblapack_rt2 = rb_float_new((double)rt2);
  rblapack_cs1 = rb_float_new((double)cs1);
  rblapack_sn1 = rb_funcall(rb_gv_get("Complex"), rb_intern("new"), 2, rb_float_new((double)(sn1.r)), rb_float_new((double)(sn1.i)));
  return rb_ary_new3(4, rblapack_rt1, rblapack_rt2, rblapack_cs1, rblapack_sn1);
}

void
init_lapack_zlaev2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zlaev2", rblapack_zlaev2, -1);
}