1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
|
#include "rb_lapack.h"
extern VOID zlaqr1_(integer* n, doublecomplex* h, integer* ldh, doublecomplex* s1, doublecomplex* s2, doublecomplex* v);
static VALUE
rblapack_zlaqr1(int argc, VALUE *argv, VALUE self){
VALUE rblapack_h;
doublecomplex *h;
VALUE rblapack_s1;
doublecomplex s1;
VALUE rblapack_s2;
doublecomplex s2;
VALUE rblapack_v;
doublecomplex *v;
integer ldh;
integer n;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n v = NumRu::Lapack.zlaqr1( h, s1, s2, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZLAQR1( N, H, LDH, S1, S2, V )\n\n* Given a 2-by-2 or 3-by-3 matrix H, ZLAQR1 sets v to a\n* scalar multiple of the first column of the product\n*\n* (*) K = (H - s1*I)*(H - s2*I)\n*\n* scaling to avoid overflows and most underflows.\n*\n* This is useful for starting double implicit shift bulges\n* in the QR algorithm.\n*\n*\n\n* N (input) integer\n* Order of the matrix H. N must be either 2 or 3.\n*\n* H (input) COMPLEX*16 array of dimension (LDH,N)\n* The 2-by-2 or 3-by-3 matrix H in (*).\n*\n* LDH (input) integer\n* The leading dimension of H as declared in\n* the calling procedure. LDH.GE.N\n*\n* S1 (input) COMPLEX*16\n* S2 S1 and S2 are the shifts defining K in (*) above.\n*\n* V (output) COMPLEX*16 array of dimension N\n* A scalar multiple of the first column of the\n* matrix K in (*).\n*\n\n* ================================================================\n* Based on contributions by\n* Karen Braman and Ralph Byers, Department of Mathematics,\n* University of Kansas, USA\n*\n* ================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n v = NumRu::Lapack.zlaqr1( h, s1, s2, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 3 && argc != 3)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
rblapack_h = argv[0];
rblapack_s1 = argv[1];
rblapack_s2 = argv[2];
if (argc == 3) {
} else if (rblapack_options != Qnil) {
} else {
}
if (!NA_IsNArray(rblapack_h))
rb_raise(rb_eArgError, "h (1th argument) must be NArray");
if (NA_RANK(rblapack_h) != 2)
rb_raise(rb_eArgError, "rank of h (1th argument) must be %d", 2);
ldh = NA_SHAPE0(rblapack_h);
n = NA_SHAPE1(rblapack_h);
if (NA_TYPE(rblapack_h) != NA_DCOMPLEX)
rblapack_h = na_change_type(rblapack_h, NA_DCOMPLEX);
h = NA_PTR_TYPE(rblapack_h, doublecomplex*);
s2.r = NUM2DBL(rb_funcall(rblapack_s2, rb_intern("real"), 0));
s2.i = NUM2DBL(rb_funcall(rblapack_s2, rb_intern("imag"), 0));
s1.r = NUM2DBL(rb_funcall(rblapack_s1, rb_intern("real"), 0));
s1.i = NUM2DBL(rb_funcall(rblapack_s1, rb_intern("imag"), 0));
{
na_shape_t shape[1];
shape[0] = n;
rblapack_v = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
v = NA_PTR_TYPE(rblapack_v, doublecomplex*);
zlaqr1_(&n, h, &ldh, &s1, &s2, v);
return rblapack_v;
}
void
init_lapack_zlaqr1(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "zlaqr1", rblapack_zlaqr1, -1);
}
|