File: zlar2v.c

package info (click to toggle)
ruby-lapack 1.7.2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 29,304 kB
  • ctags: 3,419
  • sloc: ansic: 190,572; ruby: 3,937; makefile: 4
file content (149 lines) | stat: -rw-r--r-- 7,163 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include "rb_lapack.h"

extern VOID zlar2v_(integer* n, doublecomplex* x, doublecomplex* y, doublecomplex* z, integer* incx, doublereal* c, doublecomplex* s, integer* incc);


static VALUE
rblapack_zlar2v(int argc, VALUE *argv, VALUE self){
  VALUE rblapack_n;
  integer n; 
  VALUE rblapack_x;
  doublecomplex *x; 
  VALUE rblapack_y;
  doublecomplex *y; 
  VALUE rblapack_z;
  doublecomplex *z; 
  VALUE rblapack_incx;
  integer incx; 
  VALUE rblapack_c;
  doublereal *c; 
  VALUE rblapack_s;
  doublecomplex *s; 
  VALUE rblapack_incc;
  integer incc; 
  VALUE rblapack_x_out__;
  doublecomplex *x_out__;
  VALUE rblapack_y_out__;
  doublecomplex *y_out__;
  VALUE rblapack_z_out__;
  doublecomplex *z_out__;


  VALUE rblapack_options;
  if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
    argc--;
    rblapack_options = argv[argc];
    if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, y, z = NumRu::Lapack.zlar2v( n, x, y, z, incx, c, s, incc, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n      SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )\n\n*  Purpose\n*  =======\n*\n*  ZLAR2V applies a vector of complex plane rotations with real cosines\n*  from both sides to a sequence of 2-by-2 complex Hermitian matrices,\n*  defined by the elements of the vectors x, y and z. For i = 1,2,...,n\n*\n*     (       x(i)  z(i) ) :=\n*     ( conjg(z(i)) y(i) )\n*\n*       (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )\n*       ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )\n*\n\n*  Arguments\n*  =========\n*\n*  N       (input) INTEGER\n*          The number of plane rotations to be applied.\n*\n*  X       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)\n*          The vector x; the elements of x are assumed to be real.\n*\n*  Y       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)\n*          The vector y; the elements of y are assumed to be real.\n*\n*  Z       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)\n*          The vector z.\n*\n*  INCX    (input) INTEGER\n*          The increment between elements of X, Y and Z. INCX > 0.\n*\n*  C       (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)\n*          The cosines of the plane rotations.\n*\n*  S       (input) COMPLEX*16 array, dimension (1+(N-1)*INCC)\n*          The sines of the plane rotations.\n*\n*  INCC    (input) INTEGER\n*          The increment between elements of C and S. INCC > 0.\n*\n\n*  =====================================================================\n*\n*     .. Local Scalars ..\n      INTEGER            I, IC, IX\n      DOUBLE PRECISION   CI, SII, SIR, T1I, T1R, T5, T6, XI, YI, ZII,\n     $                   ZIR\n      COMPLEX*16         SI, T2, T3, T4, ZI\n*     ..\n*     .. Intrinsic Functions ..\n      INTRINSIC          DBLE, DCMPLX, DCONJG, DIMAG\n*     ..\n\n");
      return Qnil;
    }
    if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
      printf("%s\n", "USAGE:\n  x, y, z = NumRu::Lapack.zlar2v( n, x, y, z, incx, c, s, incc, [:usage => usage, :help => help])\n");
      return Qnil;
    } 
  } else
    rblapack_options = Qnil;
  if (argc != 8 && argc != 8)
    rb_raise(rb_eArgError,"wrong number of arguments (%d for 8)", argc);
  rblapack_n = argv[0];
  rblapack_x = argv[1];
  rblapack_y = argv[2];
  rblapack_z = argv[3];
  rblapack_incx = argv[4];
  rblapack_c = argv[5];
  rblapack_s = argv[6];
  rblapack_incc = argv[7];
  if (argc == 8) {
  } else if (rblapack_options != Qnil) {
  } else {
  }

  n = NUM2INT(rblapack_n);
  incx = NUM2INT(rblapack_incx);
  incc = NUM2INT(rblapack_incc);
  if (!NA_IsNArray(rblapack_x))
    rb_raise(rb_eArgError, "x (2th argument) must be NArray");
  if (NA_RANK(rblapack_x) != 1)
    rb_raise(rb_eArgError, "rank of x (2th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_x) != (1+(n-1)*incx))
    rb_raise(rb_eRuntimeError, "shape 0 of x must be %d", 1+(n-1)*incx);
  if (NA_TYPE(rblapack_x) != NA_DCOMPLEX)
    rblapack_x = na_change_type(rblapack_x, NA_DCOMPLEX);
  x = NA_PTR_TYPE(rblapack_x, doublecomplex*);
  if (!NA_IsNArray(rblapack_z))
    rb_raise(rb_eArgError, "z (4th argument) must be NArray");
  if (NA_RANK(rblapack_z) != 1)
    rb_raise(rb_eArgError, "rank of z (4th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_z) != (1+(n-1)*incx))
    rb_raise(rb_eRuntimeError, "shape 0 of z must be %d", 1+(n-1)*incx);
  if (NA_TYPE(rblapack_z) != NA_DCOMPLEX)
    rblapack_z = na_change_type(rblapack_z, NA_DCOMPLEX);
  z = NA_PTR_TYPE(rblapack_z, doublecomplex*);
  if (!NA_IsNArray(rblapack_s))
    rb_raise(rb_eArgError, "s (7th argument) must be NArray");
  if (NA_RANK(rblapack_s) != 1)
    rb_raise(rb_eArgError, "rank of s (7th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_s) != (1+(n-1)*incc))
    rb_raise(rb_eRuntimeError, "shape 0 of s must be %d", 1+(n-1)*incc);
  if (NA_TYPE(rblapack_s) != NA_DCOMPLEX)
    rblapack_s = na_change_type(rblapack_s, NA_DCOMPLEX);
  s = NA_PTR_TYPE(rblapack_s, doublecomplex*);
  if (!NA_IsNArray(rblapack_y))
    rb_raise(rb_eArgError, "y (3th argument) must be NArray");
  if (NA_RANK(rblapack_y) != 1)
    rb_raise(rb_eArgError, "rank of y (3th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_y) != (1+(n-1)*incx))
    rb_raise(rb_eRuntimeError, "shape 0 of y must be %d", 1+(n-1)*incx);
  if (NA_TYPE(rblapack_y) != NA_DCOMPLEX)
    rblapack_y = na_change_type(rblapack_y, NA_DCOMPLEX);
  y = NA_PTR_TYPE(rblapack_y, doublecomplex*);
  if (!NA_IsNArray(rblapack_c))
    rb_raise(rb_eArgError, "c (6th argument) must be NArray");
  if (NA_RANK(rblapack_c) != 1)
    rb_raise(rb_eArgError, "rank of c (6th argument) must be %d", 1);
  if (NA_SHAPE0(rblapack_c) != (1+(n-1)*incc))
    rb_raise(rb_eRuntimeError, "shape 0 of c must be %d", 1+(n-1)*incc);
  if (NA_TYPE(rblapack_c) != NA_DFLOAT)
    rblapack_c = na_change_type(rblapack_c, NA_DFLOAT);
  c = NA_PTR_TYPE(rblapack_c, doublereal*);
  {
    na_shape_t shape[1];
    shape[0] = 1+(n-1)*incx;
    rblapack_x_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  x_out__ = NA_PTR_TYPE(rblapack_x_out__, doublecomplex*);
  MEMCPY(x_out__, x, doublecomplex, NA_TOTAL(rblapack_x));
  rblapack_x = rblapack_x_out__;
  x = x_out__;
  {
    na_shape_t shape[1];
    shape[0] = 1+(n-1)*incx;
    rblapack_y_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  y_out__ = NA_PTR_TYPE(rblapack_y_out__, doublecomplex*);
  MEMCPY(y_out__, y, doublecomplex, NA_TOTAL(rblapack_y));
  rblapack_y = rblapack_y_out__;
  y = y_out__;
  {
    na_shape_t shape[1];
    shape[0] = 1+(n-1)*incx;
    rblapack_z_out__ = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
  }
  z_out__ = NA_PTR_TYPE(rblapack_z_out__, doublecomplex*);
  MEMCPY(z_out__, z, doublecomplex, NA_TOTAL(rblapack_z));
  rblapack_z = rblapack_z_out__;
  z = z_out__;

  zlar2v_(&n, x, y, z, &incx, c, s, &incc);

  return rb_ary_new3(3, rblapack_x, rblapack_y, rblapack_z);
}

void
init_lapack_zlar2v(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
  sHelp = sH;
  sUsage = sU;
  rblapack_ZERO = zero;

  rb_define_module_function(mLapack, "zlar2v", rblapack_zlar2v, -1);
}