1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
#include "rb_lapack.h"
extern VOID ztrsen_(char* job, char* compq, logical* select, integer* n, doublecomplex* t, integer* ldt, doublecomplex* q, integer* ldq, doublecomplex* w, integer* m, doublereal* s, doublereal* sep, doublecomplex* work, integer* lwork, integer* info);
static VALUE
rblapack_ztrsen(int argc, VALUE *argv, VALUE self){
VALUE rblapack_job;
char job;
VALUE rblapack_compq;
char compq;
VALUE rblapack_select;
logical *select;
VALUE rblapack_t;
doublecomplex *t;
VALUE rblapack_q;
doublecomplex *q;
VALUE rblapack_lwork;
integer lwork;
VALUE rblapack_w;
doublecomplex *w;
VALUE rblapack_m;
integer m;
VALUE rblapack_s;
doublereal s;
VALUE rblapack_sep;
doublereal sep;
VALUE rblapack_work;
doublecomplex *work;
VALUE rblapack_info;
integer info;
VALUE rblapack_t_out__;
doublecomplex *t_out__;
VALUE rblapack_q_out__;
doublecomplex *q_out__;
integer n;
integer ldt;
integer ldq;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n w, m, s, sep, work, info, t, q = NumRu::Lapack.ztrsen( job, compq, select, t, q, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S, SEP, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* ZTRSEN reorders the Schur factorization of a complex matrix\n* A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in\n* the leading positions on the diagonal of the upper triangular matrix\n* T, and the leading columns of Q form an orthonormal basis of the\n* corresponding right invariant subspace.\n*\n* Optionally the routine computes the reciprocal condition numbers of\n* the cluster of eigenvalues and/or the invariant subspace.\n*\n\n* Arguments\n* =========\n*\n* JOB (input) CHARACTER*1\n* Specifies whether condition numbers are required for the\n* cluster of eigenvalues (S) or the invariant subspace (SEP):\n* = 'N': none;\n* = 'E': for eigenvalues only (S);\n* = 'V': for invariant subspace only (SEP);\n* = 'B': for both eigenvalues and invariant subspace (S and\n* SEP).\n*\n* COMPQ (input) CHARACTER*1\n* = 'V': update the matrix Q of Schur vectors;\n* = 'N': do not update Q.\n*\n* SELECT (input) LOGICAL array, dimension (N)\n* SELECT specifies the eigenvalues in the selected cluster. To\n* select the j-th eigenvalue, SELECT(j) must be set to .TRUE..\n*\n* N (input) INTEGER\n* The order of the matrix T. N >= 0.\n*\n* T (input/output) COMPLEX*16 array, dimension (LDT,N)\n* On entry, the upper triangular matrix T.\n* On exit, T is overwritten by the reordered matrix T, with the\n* selected eigenvalues as the leading diagonal elements.\n*\n* LDT (input) INTEGER\n* The leading dimension of the array T. LDT >= max(1,N).\n*\n* Q (input/output) COMPLEX*16 array, dimension (LDQ,N)\n* On entry, if COMPQ = 'V', the matrix Q of Schur vectors.\n* On exit, if COMPQ = 'V', Q has been postmultiplied by the\n* unitary transformation matrix which reorders T; the leading M\n* columns of Q form an orthonormal basis for the specified\n* invariant subspace.\n* If COMPQ = 'N', Q is not referenced.\n*\n* LDQ (input) INTEGER\n* The leading dimension of the array Q.\n* LDQ >= 1; and if COMPQ = 'V', LDQ >= N.\n*\n* W (output) COMPLEX*16 array, dimension (N)\n* The reordered eigenvalues of T, in the same order as they\n* appear on the diagonal of T.\n*\n* M (output) INTEGER\n* The dimension of the specified invariant subspace.\n* 0 <= M <= N.\n*\n* S (output) DOUBLE PRECISION\n* If JOB = 'E' or 'B', S is a lower bound on the reciprocal\n* condition number for the selected cluster of eigenvalues.\n* S cannot underestimate the true reciprocal condition number\n* by more than a factor of sqrt(N). If M = 0 or N, S = 1.\n* If JOB = 'N' or 'V', S is not referenced.\n*\n* SEP (output) DOUBLE PRECISION\n* If JOB = 'V' or 'B', SEP is the estimated reciprocal\n* condition number of the specified invariant subspace. If\n* M = 0 or N, SEP = norm(T).\n* If JOB = 'N' or 'E', SEP is not referenced.\n*\n* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK.\n* If JOB = 'N', LWORK >= 1;\n* if JOB = 'E', LWORK = max(1,M*(N-M));\n* if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* ZTRSEN first collects the selected eigenvalues by computing a unitary\n* transformation Z to move them to the top left corner of T. In other\n* words, the selected eigenvalues are the eigenvalues of T11 in:\n*\n* Z'*T*Z = ( T11 T12 ) n1\n* ( 0 T22 ) n2\n* n1 n2\n*\n* where N = n1+n2 and Z' means the conjugate transpose of Z. The first\n* n1 columns of Z span the specified invariant subspace of T.\n*\n* If T has been obtained from the Schur factorization of a matrix\n* A = Q*T*Q', then the reordered Schur factorization of A is given by\n* A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span the\n* corresponding invariant subspace of A.\n*\n* The reciprocal condition number of the average of the eigenvalues of\n* T11 may be returned in S. S lies between 0 (very badly conditioned)\n* and 1 (very well conditioned). It is computed as follows. First we\n* compute R so that\n*\n* P = ( I R ) n1\n* ( 0 0 ) n2\n* n1 n2\n*\n* is the projector on the invariant subspace associated with T11.\n* R is the solution of the Sylvester equation:\n*\n* T11*R - R*T22 = T12.\n*\n* Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote\n* the two-norm of M. Then S is computed as the lower bound\n*\n* (1 + F-norm(R)**2)**(-1/2)\n*\n* on the reciprocal of 2-norm(P), the true reciprocal condition number.\n* S cannot underestimate 1 / 2-norm(P) by more than a factor of\n* sqrt(N).\n*\n* An approximate error bound for the computed average of the\n* eigenvalues of T11 is\n*\n* EPS * norm(T) / S\n*\n* where EPS is the machine precision.\n*\n* The reciprocal condition number of the right invariant subspace\n* spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.\n* SEP is defined as the separation of T11 and T22:\n*\n* sep( T11, T22 ) = sigma-min( C )\n*\n* where sigma-min(C) is the smallest singular value of the\n* n1*n2-by-n1*n2 matrix\n*\n* C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )\n*\n* I(m) is an m by m identity matrix, and kprod denotes the Kronecker\n* product. We estimate sigma-min(C) by the reciprocal of an estimate of\n* the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)\n* cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).\n*\n* When SEP is small, small changes in T can cause large changes in\n* the invariant subspace. An approximate bound on the maximum angular\n* error in the computed right invariant subspace is\n*\n* EPS * norm(T) / SEP\n*\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n w, m, s, sep, work, info, t, q = NumRu::Lapack.ztrsen( job, compq, select, t, q, [:lwork => lwork, :usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 6)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_job = argv[0];
rblapack_compq = argv[1];
rblapack_select = argv[2];
rblapack_t = argv[3];
rblapack_q = argv[4];
if (argc == 6) {
rblapack_lwork = argv[5];
} else if (rblapack_options != Qnil) {
rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
} else {
rblapack_lwork = Qnil;
}
job = StringValueCStr(rblapack_job)[0];
if (!NA_IsNArray(rblapack_select))
rb_raise(rb_eArgError, "select (3th argument) must be NArray");
if (NA_RANK(rblapack_select) != 1)
rb_raise(rb_eArgError, "rank of select (3th argument) must be %d", 1);
n = NA_SHAPE0(rblapack_select);
if (NA_TYPE(rblapack_select) != NA_LINT)
rblapack_select = na_change_type(rblapack_select, NA_LINT);
select = NA_PTR_TYPE(rblapack_select, logical*);
if (!NA_IsNArray(rblapack_q))
rb_raise(rb_eArgError, "q (5th argument) must be NArray");
if (NA_RANK(rblapack_q) != 2)
rb_raise(rb_eArgError, "rank of q (5th argument) must be %d", 2);
ldq = NA_SHAPE0(rblapack_q);
if (NA_SHAPE1(rblapack_q) != n)
rb_raise(rb_eRuntimeError, "shape 1 of q must be the same as shape 0 of select");
if (NA_TYPE(rblapack_q) != NA_DCOMPLEX)
rblapack_q = na_change_type(rblapack_q, NA_DCOMPLEX);
q = NA_PTR_TYPE(rblapack_q, doublecomplex*);
compq = StringValueCStr(rblapack_compq)[0];
if (!NA_IsNArray(rblapack_t))
rb_raise(rb_eArgError, "t (4th argument) must be NArray");
if (NA_RANK(rblapack_t) != 2)
rb_raise(rb_eArgError, "rank of t (4th argument) must be %d", 2);
ldt = NA_SHAPE0(rblapack_t);
if (NA_SHAPE1(rblapack_t) != n)
rb_raise(rb_eRuntimeError, "shape 1 of t must be the same as shape 0 of select");
if (NA_TYPE(rblapack_t) != NA_DCOMPLEX)
rblapack_t = na_change_type(rblapack_t, NA_DCOMPLEX);
t = NA_PTR_TYPE(rblapack_t, doublecomplex*);
if (rblapack_lwork == Qnil)
lwork = lsame_(&job,"N") ? n : lsame_(&job,"E") ? m*(n-m) : (lsame_(&job,"V")||lsame_(&job,"B")) ? 2*m*(n-m) : 0;
else {
lwork = NUM2INT(rblapack_lwork);
}
{
na_shape_t shape[1];
shape[0] = n;
rblapack_w = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
w = NA_PTR_TYPE(rblapack_w, doublecomplex*);
{
na_shape_t shape[1];
shape[0] = MAX(1,lwork);
rblapack_work = na_make_object(NA_DCOMPLEX, 1, shape, cNArray);
}
work = NA_PTR_TYPE(rblapack_work, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldt;
shape[1] = n;
rblapack_t_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
t_out__ = NA_PTR_TYPE(rblapack_t_out__, doublecomplex*);
MEMCPY(t_out__, t, doublecomplex, NA_TOTAL(rblapack_t));
rblapack_t = rblapack_t_out__;
t = t_out__;
{
na_shape_t shape[2];
shape[0] = ldq;
shape[1] = n;
rblapack_q_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
q_out__ = NA_PTR_TYPE(rblapack_q_out__, doublecomplex*);
MEMCPY(q_out__, q, doublecomplex, NA_TOTAL(rblapack_q));
rblapack_q = rblapack_q_out__;
q = q_out__;
ztrsen_(&job, &compq, select, &n, t, &ldt, q, &ldq, w, &m, &s, &sep, work, &lwork, &info);
rblapack_m = INT2NUM(m);
rblapack_s = rb_float_new((double)s);
rblapack_sep = rb_float_new((double)sep);
rblapack_info = INT2NUM(info);
return rb_ary_new3(8, rblapack_w, rblapack_m, rblapack_s, rblapack_sep, rblapack_work, rblapack_info, rblapack_t, rblapack_q);
}
void
init_lapack_ztrsen(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ztrsen", rblapack_ztrsen, -1);
}
|