1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
#include "rb_lapack.h"
extern VOID ztrtrs_(char* uplo, char* trans, char* diag, integer* n, integer* nrhs, doublecomplex* a, integer* lda, doublecomplex* b, integer* ldb, integer* info);
static VALUE
rblapack_ztrtrs(int argc, VALUE *argv, VALUE self){
VALUE rblapack_uplo;
char uplo;
VALUE rblapack_trans;
char trans;
VALUE rblapack_diag;
char diag;
VALUE rblapack_a;
doublecomplex *a;
VALUE rblapack_b;
doublecomplex *b;
VALUE rblapack_info;
integer info;
VALUE rblapack_b_out__;
doublecomplex *b_out__;
integer lda;
integer n;
integer ldb;
integer nrhs;
VALUE rblapack_options;
if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
argc--;
rblapack_options = argv[argc];
if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.ztrtrs( uplo, trans, diag, a, b, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE ZTRTRS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO )\n\n* Purpose\n* =======\n*\n* ZTRTRS solves a triangular system of the form\n*\n* A * X = B, A**T * X = B, or A**H * X = B,\n*\n* where A is a triangular matrix of order N, and B is an N-by-NRHS\n* matrix. A check is made to verify that A is nonsingular.\n*\n\n* Arguments\n* =========\n*\n* UPLO (input) CHARACTER*1\n* = 'U': A is upper triangular;\n* = 'L': A is lower triangular.\n*\n* TRANS (input) CHARACTER*1\n* Specifies the form of the system of equations:\n* = 'N': A * X = B (No transpose)\n* = 'T': A**T * X = B (Transpose)\n* = 'C': A**H * X = B (Conjugate transpose)\n*\n* DIAG (input) CHARACTER*1\n* = 'N': A is non-unit triangular;\n* = 'U': A is unit triangular.\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* NRHS (input) INTEGER\n* The number of right hand sides, i.e., the number of columns\n* of the matrix B. NRHS >= 0.\n*\n* A (input) COMPLEX*16 array, dimension (LDA,N)\n* The triangular matrix A. If UPLO = 'U', the leading N-by-N\n* upper triangular part of the array A contains the upper\n* triangular matrix, and the strictly lower triangular part of\n* A is not referenced. If UPLO = 'L', the leading N-by-N lower\n* triangular part of the array A contains the lower triangular\n* matrix, and the strictly upper triangular part of A is not\n* referenced. If DIAG = 'U', the diagonal elements of A are\n* also not referenced and are assumed to be 1.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)\n* On entry, the right hand side matrix B.\n* On exit, if INFO = 0, the solution matrix X.\n*\n* LDB (input) INTEGER\n* The leading dimension of the array B. LDB >= max(1,N).\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n* > 0: if INFO = i, the i-th diagonal element of A is zero,\n* indicating that the matrix is singular and the solutions\n* X have not been computed.\n*\n\n* =====================================================================\n*\n\n");
return Qnil;
}
if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
printf("%s\n", "USAGE:\n info, b = NumRu::Lapack.ztrtrs( uplo, trans, diag, a, b, [:usage => usage, :help => help])\n");
return Qnil;
}
} else
rblapack_options = Qnil;
if (argc != 5 && argc != 5)
rb_raise(rb_eArgError,"wrong number of arguments (%d for 5)", argc);
rblapack_uplo = argv[0];
rblapack_trans = argv[1];
rblapack_diag = argv[2];
rblapack_a = argv[3];
rblapack_b = argv[4];
if (argc == 5) {
} else if (rblapack_options != Qnil) {
} else {
}
uplo = StringValueCStr(rblapack_uplo)[0];
diag = StringValueCStr(rblapack_diag)[0];
if (!NA_IsNArray(rblapack_b))
rb_raise(rb_eArgError, "b (5th argument) must be NArray");
if (NA_RANK(rblapack_b) != 2)
rb_raise(rb_eArgError, "rank of b (5th argument) must be %d", 2);
ldb = NA_SHAPE0(rblapack_b);
nrhs = NA_SHAPE1(rblapack_b);
if (NA_TYPE(rblapack_b) != NA_DCOMPLEX)
rblapack_b = na_change_type(rblapack_b, NA_DCOMPLEX);
b = NA_PTR_TYPE(rblapack_b, doublecomplex*);
trans = StringValueCStr(rblapack_trans)[0];
if (!NA_IsNArray(rblapack_a))
rb_raise(rb_eArgError, "a (4th argument) must be NArray");
if (NA_RANK(rblapack_a) != 2)
rb_raise(rb_eArgError, "rank of a (4th argument) must be %d", 2);
lda = NA_SHAPE0(rblapack_a);
n = NA_SHAPE1(rblapack_a);
if (NA_TYPE(rblapack_a) != NA_DCOMPLEX)
rblapack_a = na_change_type(rblapack_a, NA_DCOMPLEX);
a = NA_PTR_TYPE(rblapack_a, doublecomplex*);
{
na_shape_t shape[2];
shape[0] = ldb;
shape[1] = nrhs;
rblapack_b_out__ = na_make_object(NA_DCOMPLEX, 2, shape, cNArray);
}
b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublecomplex*);
MEMCPY(b_out__, b, doublecomplex, NA_TOTAL(rblapack_b));
rblapack_b = rblapack_b_out__;
b = b_out__;
ztrtrs_(&uplo, &trans, &diag, &n, &nrhs, a, &lda, b, &ldb, &info);
rblapack_info = INT2NUM(info);
return rb_ary_new3(2, rblapack_info, rblapack_b);
}
void
init_lapack_ztrtrs(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
sHelp = sH;
sUsage = sU;
rblapack_ZERO = zero;
rb_define_module_function(mLapack, "ztrtrs", rblapack_ztrtrs, -1);
}
|