1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
---
:name: cgbbrd
:md5sum: b3d52b28be53961bb824695caf6d2471
:category: :subroutine
:arguments:
- vect:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- ncc:
:type: integer
:intent: input
- kl:
:type: integer
:intent: input
- ku:
:type: integer
:intent: input
- ab:
:type: complex
:intent: input/output
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- d:
:type: real
:intent: output
:dims:
- MIN(m,n)
- e:
:type: real
:intent: output
:dims:
- MIN(m,n)-1
- q:
:type: complex
:intent: output
:dims:
- ldq
- m
- ldq:
:type: integer
:intent: input
- pt:
:type: complex
:intent: output
:dims:
- ldpt
- n
- ldpt:
:type: integer
:intent: input
- c:
:type: complex
:intent: input/output
:dims:
- ldc
- ncc
- ldc:
:type: integer
:intent: input
- work:
:type: complex
:intent: workspace
:dims:
- MAX(m,n)
- rwork:
:type: real
:intent: workspace
:dims:
- MAX(m,n)
- info:
:type: integer
:intent: output
:substitutions:
m: ldab
ldq: "((lsame_(&vect,\"Q\")) || (lsame_(&vect,\"B\"))) ? MAX(1,m) : 1"
ldpt: "((lsame_(&vect,\"P\")) || (lsame_(&vect,\"B\"))) ? MAX(1,n) : 1"
:fortran_help: " SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CGBBRD reduces a complex general m-by-n band matrix A to real upper\n\
* bidiagonal form B by a unitary transformation: Q' * A * P = B.\n\
*\n\
* The routine computes B, and optionally forms Q or P', or computes\n\
* Q'*C for a given matrix C.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* VECT (input) CHARACTER*1\n\
* Specifies whether or not the matrices Q and P' are to be\n\
* formed.\n\
* = 'N': do not form Q or P';\n\
* = 'Q': form Q only;\n\
* = 'P': form P' only;\n\
* = 'B': form both.\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the matrix A. N >= 0.\n\
*\n\
* NCC (input) INTEGER\n\
* The number of columns of the matrix C. NCC >= 0.\n\
*\n\
* KL (input) INTEGER\n\
* The number of subdiagonals of the matrix A. KL >= 0.\n\
*\n\
* KU (input) INTEGER\n\
* The number of superdiagonals of the matrix A. KU >= 0.\n\
*\n\
* AB (input/output) COMPLEX array, dimension (LDAB,N)\n\
* On entry, the m-by-n band matrix A, stored in rows 1 to\n\
* KL+KU+1. The j-th column of A is stored in the j-th column of\n\
* the array AB as follows:\n\
* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).\n\
* On exit, A is overwritten by values generated during the\n\
* reduction.\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array A. LDAB >= KL+KU+1.\n\
*\n\
* D (output) REAL array, dimension (min(M,N))\n\
* The diagonal elements of the bidiagonal matrix B.\n\
*\n\
* E (output) REAL array, dimension (min(M,N)-1)\n\
* The superdiagonal elements of the bidiagonal matrix B.\n\
*\n\
* Q (output) COMPLEX array, dimension (LDQ,M)\n\
* If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.\n\
* If VECT = 'N' or 'P', the array Q is not referenced.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q.\n\
* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.\n\
*\n\
* PT (output) COMPLEX array, dimension (LDPT,N)\n\
* If VECT = 'P' or 'B', the n-by-n unitary matrix P'.\n\
* If VECT = 'N' or 'Q', the array PT is not referenced.\n\
*\n\
* LDPT (input) INTEGER\n\
* The leading dimension of the array PT.\n\
* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.\n\
*\n\
* C (input/output) COMPLEX array, dimension (LDC,NCC)\n\
* On entry, an m-by-ncc matrix C.\n\
* On exit, C is overwritten by Q'*C.\n\
* C is not referenced if NCC = 0.\n\
*\n\
* LDC (input) INTEGER\n\
* The leading dimension of the array C.\n\
* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (max(M,N))\n\
*\n\
* RWORK (workspace) REAL array, dimension (max(M,N))\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* =====================================================================\n\
*\n"
|