1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
---
:name: cgbrfs
:md5sum: b26da869b9502286688e2b2960b3e223
:category: :subroutine
:arguments:
- trans:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- kl:
:type: integer
:intent: input
- ku:
:type: integer
:intent: input
- nrhs:
:type: integer
:intent: input
- ab:
:type: complex
:intent: input
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- afb:
:type: complex
:intent: input
:dims:
- ldafb
- n
- ldafb:
:type: integer
:intent: input
- ipiv:
:type: integer
:intent: input
:dims:
- n
- b:
:type: complex
:intent: input
:dims:
- ldb
- nrhs
- ldb:
:type: integer
:intent: input
- x:
:type: complex
:intent: input/output
:dims:
- ldx
- nrhs
- ldx:
:type: integer
:intent: input
- ferr:
:type: real
:intent: output
:dims:
- nrhs
- berr:
:type: real
:intent: output
:dims:
- nrhs
- work:
:type: complex
:intent: workspace
:dims:
- 2*n
- rwork:
:type: real
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CGBRFS improves the computed solution to a system of linear\n\
* equations when the coefficient matrix is banded, and provides\n\
* error bounds and backward error estimates for the solution.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* Specifies the form of the system of equations:\n\
* = 'N': A * X = B (No transpose)\n\
* = 'T': A**T * X = B (Transpose)\n\
* = 'C': A**H * X = B (Conjugate transpose)\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* KL (input) INTEGER\n\
* The number of subdiagonals within the band of A. KL >= 0.\n\
*\n\
* KU (input) INTEGER\n\
* The number of superdiagonals within the band of A. KU >= 0.\n\
*\n\
* NRHS (input) INTEGER\n\
* The number of right hand sides, i.e., the number of columns\n\
* of the matrices B and X. NRHS >= 0.\n\
*\n\
* AB (input) COMPLEX array, dimension (LDAB,N)\n\
* The original band matrix A, stored in rows 1 to KL+KU+1.\n\
* The j-th column of A is stored in the j-th column of the\n\
* array AB as follows:\n\
* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KL+KU+1.\n\
*\n\
* AFB (input) COMPLEX array, dimension (LDAFB,N)\n\
* Details of the LU factorization of the band matrix A, as\n\
* computed by CGBTRF. U is stored as an upper triangular band\n\
* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and\n\
* the multipliers used during the factorization are stored in\n\
* rows KL+KU+2 to 2*KL+KU+1.\n\
*\n\
* LDAFB (input) INTEGER\n\
* The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.\n\
*\n\
* IPIV (input) INTEGER array, dimension (N)\n\
* The pivot indices from CGBTRF; for 1<=i<=N, row i of the\n\
* matrix was interchanged with row IPIV(i).\n\
*\n\
* B (input) COMPLEX array, dimension (LDB,NRHS)\n\
* The right hand side matrix B.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* X (input/output) COMPLEX array, dimension (LDX,NRHS)\n\
* On entry, the solution matrix X, as computed by CGBTRS.\n\
* On exit, the improved solution matrix X.\n\
*\n\
* LDX (input) INTEGER\n\
* The leading dimension of the array X. LDX >= max(1,N).\n\
*\n\
* FERR (output) REAL array, dimension (NRHS)\n\
* The estimated forward error bound for each solution vector\n\
* X(j) (the j-th column of the solution matrix X).\n\
* If XTRUE is the true solution corresponding to X(j), FERR(j)\n\
* is an estimated upper bound for the magnitude of the largest\n\
* element in (X(j) - XTRUE) divided by the magnitude of the\n\
* largest element in X(j). The estimate is as reliable as\n\
* the estimate for RCOND, and is almost always a slight\n\
* overestimate of the true error.\n\
*\n\
* BERR (output) REAL array, dimension (NRHS)\n\
* The componentwise relative backward error of each solution\n\
* vector X(j) (i.e., the smallest relative change in\n\
* any element of A or B that makes X(j) an exact solution).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (2*N)\n\
*\n\
* RWORK (workspace) REAL array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
*\n\
* Internal Parameters\n\
* ===================\n\
*\n\
* ITMAX is the maximum number of steps of iterative refinement.\n\
*\n\n\
* =====================================================================\n\
*\n"
|