File: cgerq2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (91 lines) | stat: -rwxr-xr-x 2,663 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
--- 
:name: cgerq2
:md5sum: 5c2737c86fa799ea149918e61f3f15a4
:category: :subroutine
:arguments: 
- m: 
    :type: integer
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- tau: 
    :type: complex
    :intent: output
    :dims: 
    - MIN(m,n)
- work: 
    :type: complex
    :intent: workspace
    :dims: 
    - m
- info: 
    :type: integer
    :intent: output
:substitutions: 
  m: lda
:fortran_help: "      SUBROUTINE CGERQ2( M, N, A, LDA, TAU, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CGERQ2 computes an RQ factorization of a complex m by n matrix A:\n\
  *  A = R * Q.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  M       (input) INTEGER\n\
  *          The number of rows of the matrix A.  M >= 0.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The number of columns of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          On entry, the m by n matrix A.\n\
  *          On exit, if m <= n, the upper triangle of the subarray\n\
  *          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;\n\
  *          if m >= n, the elements on and above the (m-n)-th subdiagonal\n\
  *          contain the m by n upper trapezoidal matrix R; the remaining\n\
  *          elements, with the array TAU, represent the unitary matrix\n\
  *          Q as a product of elementary reflectors (see Further\n\
  *          Details).\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,M).\n\
  *\n\
  *  TAU     (output) COMPLEX array, dimension (min(M,N))\n\
  *          The scalar factors of the elementary reflectors (see Further\n\
  *          Details).\n\
  *\n\
  *  WORK    (workspace) COMPLEX array, dimension (M)\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -i, the i-th argument had an illegal value\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  The matrix Q is represented as a product of elementary reflectors\n\
  *\n\
  *     Q = H(1)' H(2)' . . . H(k)', where k = min(m,n).\n\
  *\n\
  *  Each H(i) has the form\n\
  *\n\
  *     H(i) = I - tau * v * v'\n\
  *\n\
  *  where tau is a complex scalar, and v is a complex vector with\n\
  *  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on\n\
  *  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).\n\
  *\n\
  *  =====================================================================\n\
  *\n"