1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
---
:name: cgesdd
:md5sum: 22c0a1340de32a426796a6de2e6183b9
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- m:
:type: integer
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- s:
:type: real
:intent: output
:dims:
- MIN(m,n)
- u:
:type: complex
:intent: output
:dims:
- ldu
- ucol
- ldu:
:type: integer
:intent: input
- vt:
:type: complex
:intent: output
:dims:
- ldvt
- n
- ldvt:
:type: integer
:intent: input
- work:
:type: complex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "lsame_(&jobz,\"N\") ? 2*MIN(m,n)+MAX(m,n) : lsame_(&jobz,\"O\") ? 2*MIN(m,n)*MIN(m,n)+2*MIN(m,n)+MAX(m,n) : (lsame_(&jobz,\"S\")||lsame_(&jobz,\"A\")) ? MIN(m,n)*MIN(m,n)+2*MIN(m,n)+MAX(m,n) : 0"
- rwork:
:type: real
:intent: workspace
:dims:
- "MAX(1, (lsame_(&jobz,\"N\") ? 5*MIN(m,n) : MIN(m,n)*MAX(5*MIN(m,n)+7,2*MAX(m,n)+2*MIN(m,n)+1)))"
- iwork:
:type: integer
:intent: workspace
:dims:
- 8*MIN(m,n)
- info:
:type: integer
:intent: output
:substitutions:
m: lda
ucol: "((lsame_(&jobz,\"A\")) || (((lsame_(&jobz,\"O\")) && (m < n)))) ? m : lsame_(&jobz,\"S\") ? MIN(m,n) : 0"
ldvt: "((lsame_(&jobz,\"A\")) || (((lsame_(&jobz,\"O\")) && (m >= n)))) ? n : lsame_(&jobz,\"S\") ? MIN(m,n) : 1"
ldu: "(lsame_(&jobz,\"S\") || lsame_(&jobz,\"A\") || (lsame_(&jobz,\"O\") && m < n)) ? m : 1"
:fortran_help: " SUBROUTINE CGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, IWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CGESDD computes the singular value decomposition (SVD) of a complex\n\
* M-by-N matrix A, optionally computing the left and/or right singular\n\
* vectors, by using divide-and-conquer method. The SVD is written\n\
*\n\
* A = U * SIGMA * conjugate-transpose(V)\n\
*\n\
* where SIGMA is an M-by-N matrix which is zero except for its\n\
* min(m,n) diagonal elements, U is an M-by-M unitary matrix, and\n\
* V is an N-by-N unitary matrix. The diagonal elements of SIGMA\n\
* are the singular values of A; they are real and non-negative, and\n\
* are returned in descending order. The first min(m,n) columns of\n\
* U and V are the left and right singular vectors of A.\n\
*\n\
* Note that the routine returns VT = V**H, not V.\n\
*\n\
* The divide and conquer algorithm makes very mild assumptions about\n\
* floating point arithmetic. It will work on machines with a guard\n\
* digit in add/subtract, or on those binary machines without guard\n\
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n\
* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n\
* without guard digits, but we know of none.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* Specifies options for computing all or part of the matrix U:\n\
* = 'A': all M columns of U and all N rows of V**H are\n\
* returned in the arrays U and VT;\n\
* = 'S': the first min(M,N) columns of U and the first\n\
* min(M,N) rows of V**H are returned in the arrays U\n\
* and VT;\n\
* = 'O': If M >= N, the first N columns of U are overwritten\n\
* in the array A and all rows of V**H are returned in\n\
* the array VT;\n\
* otherwise, all columns of U are returned in the\n\
* array U and the first M rows of V**H are overwritten\n\
* in the array A;\n\
* = 'N': no columns of U or rows of V**H are computed.\n\
*\n\
* M (input) INTEGER\n\
* The number of rows of the input matrix A. M >= 0.\n\
*\n\
* N (input) INTEGER\n\
* The number of columns of the input matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the M-by-N matrix A.\n\
* On exit,\n\
* if JOBZ = 'O', A is overwritten with the first N columns\n\
* of U (the left singular vectors, stored\n\
* columnwise) if M >= N;\n\
* A is overwritten with the first M rows\n\
* of V**H (the right singular vectors, stored\n\
* rowwise) otherwise.\n\
* if JOBZ .ne. 'O', the contents of A are destroyed.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,M).\n\
*\n\
* S (output) REAL array, dimension (min(M,N))\n\
* The singular values of A, sorted so that S(i) >= S(i+1).\n\
*\n\
* U (output) COMPLEX array, dimension (LDU,UCOL)\n\
* UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;\n\
* UCOL = min(M,N) if JOBZ = 'S'.\n\
* If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M\n\
* unitary matrix U;\n\
* if JOBZ = 'S', U contains the first min(M,N) columns of U\n\
* (the left singular vectors, stored columnwise);\n\
* if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.\n\
*\n\
* LDU (input) INTEGER\n\
* The leading dimension of the array U. LDU >= 1; if\n\
* JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.\n\
*\n\
* VT (output) COMPLEX array, dimension (LDVT,N)\n\
* If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the\n\
* N-by-N unitary matrix V**H;\n\
* if JOBZ = 'S', VT contains the first min(M,N) rows of\n\
* V**H (the right singular vectors, stored rowwise);\n\
* if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.\n\
*\n\
* LDVT (input) INTEGER\n\
* The leading dimension of the array VT. LDVT >= 1; if\n\
* JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;\n\
* if JOBZ = 'S', LDVT >= min(M,N).\n\
*\n\
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK >= 1.\n\
* if JOBZ = 'N', LWORK >= 2*min(M,N)+max(M,N).\n\
* if JOBZ = 'O',\n\
* LWORK >= 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).\n\
* if JOBZ = 'S' or 'A',\n\
* LWORK >= min(M,N)*min(M,N)+2*min(M,N)+max(M,N).\n\
* For good performance, LWORK should generally be larger.\n\
*\n\
* If LWORK = -1, a workspace query is assumed. The optimal\n\
* size for the WORK array is calculated and stored in WORK(1),\n\
* and no other work except argument checking is performed.\n\
*\n\
* RWORK (workspace) REAL array, dimension (MAX(1,LRWORK))\n\
* If JOBZ = 'N', LRWORK >= 5*min(M,N).\n\
* Otherwise, \n\
* LRWORK >= min(M,N)*max(5*min(M,N)+7,2*max(M,N)+2*min(M,N)+1)\n\
*\n\
* IWORK (workspace) INTEGER array, dimension (8*min(M,N))\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: The updating process of SBDSDC did not converge.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Ming Gu and Huan Ren, Computer Science Division, University of\n\
* California at Berkeley, USA\n\
*\n\
* =====================================================================\n\
*\n"
|