File: cggbal

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (145 lines) | stat: -rwxr-xr-x 5,068 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
--- 
:name: cggbal
:md5sum: c943f265fd54c6aa73b300bdb1dec322
:category: :subroutine
:arguments: 
- job: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- b: 
    :type: complex
    :intent: input/output
    :dims: 
    - ldb
    - n
- ldb: 
    :type: integer
    :intent: input
- ilo: 
    :type: integer
    :intent: output
- ihi: 
    :type: integer
    :intent: output
- lscale: 
    :type: real
    :intent: output
    :dims: 
    - n
- rscale: 
    :type: real
    :intent: output
    :dims: 
    - n
- work: 
    :type: real
    :intent: workspace
    :dims: 
    - "(lsame_(&job,\"S\")||lsame_(&job,\"B\")) ? MAX(1,6*n) : (lsame_(&job,\"N\")||lsame_(&job,\"P\")) ? 1 : 0"
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, WORK, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CGGBAL balances a pair of general complex matrices (A,B).  This\n\
  *  involves, first, permuting A and B by similarity transformations to\n\
  *  isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N\n\
  *  elements on the diagonal; and second, applying a diagonal similarity\n\
  *  transformation to rows and columns ILO to IHI to make the rows\n\
  *  and columns as close in norm as possible. Both steps are optional.\n\
  *\n\
  *  Balancing may reduce the 1-norm of the matrices, and improve the\n\
  *  accuracy of the computed eigenvalues and/or eigenvectors in the\n\
  *  generalized eigenvalue problem A*x = lambda*B*x.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  JOB     (input) CHARACTER*1\n\
  *          Specifies the operations to be performed on A and B:\n\
  *          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0\n\
  *                  and RSCALE(I) = 1.0 for i=1,...,N;\n\
  *          = 'P':  permute only;\n\
  *          = 'S':  scale only;\n\
  *          = 'B':  both permute and scale.\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrices A and B.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          On entry, the input matrix A.\n\
  *          On exit, A is overwritten by the balanced matrix.\n\
  *          If JOB = 'N', A is not referenced.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A. LDA >= max(1,N).\n\
  *\n\
  *  B       (input/output) COMPLEX array, dimension (LDB,N)\n\
  *          On entry, the input matrix B.\n\
  *          On exit, B is overwritten by the balanced matrix.\n\
  *          If JOB = 'N', B is not referenced.\n\
  *\n\
  *  LDB     (input) INTEGER\n\
  *          The leading dimension of the array B. LDB >= max(1,N).\n\
  *\n\
  *  ILO     (output) INTEGER\n\
  *  IHI     (output) INTEGER\n\
  *          ILO and IHI are set to integers such that on exit\n\
  *          A(i,j) = 0 and B(i,j) = 0 if i > j and\n\
  *          j = 1,...,ILO-1 or i = IHI+1,...,N.\n\
  *          If JOB = 'N' or 'S', ILO = 1 and IHI = N.\n\
  *\n\
  *  LSCALE  (output) REAL array, dimension (N)\n\
  *          Details of the permutations and scaling factors applied\n\
  *          to the left side of A and B.  If P(j) is the index of the\n\
  *          row interchanged with row j, and D(j) is the scaling factor\n\
  *          applied to row j, then\n\
  *            LSCALE(j) = P(j)    for J = 1,...,ILO-1\n\
  *                      = D(j)    for J = ILO,...,IHI\n\
  *                      = P(j)    for J = IHI+1,...,N.\n\
  *          The order in which the interchanges are made is N to IHI+1,\n\
  *          then 1 to ILO-1.\n\
  *\n\
  *  RSCALE  (output) REAL array, dimension (N)\n\
  *          Details of the permutations and scaling factors applied\n\
  *          to the right side of A and B.  If P(j) is the index of the\n\
  *          column interchanged with column j, and D(j) is the scaling\n\
  *          factor applied to column j, then\n\
  *            RSCALE(j) = P(j)    for J = 1,...,ILO-1\n\
  *                      = D(j)    for J = ILO,...,IHI\n\
  *                      = P(j)    for J = IHI+1,...,N.\n\
  *          The order in which the interchanges are made is N to IHI+1,\n\
  *          then 1 to ILO-1.\n\
  *\n\
  *  WORK    (workspace) REAL array, dimension (lwork)\n\
  *          lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and\n\
  *          at least 1 when JOB = 'N' or 'P'.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  See R.C. WARD, Balancing the generalized eigenvalue problem,\n\
  *                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.\n\
  *\n\
  *  =====================================================================\n\
  *\n"