1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
---
:name: cggbal
:md5sum: c943f265fd54c6aa73b300bdb1dec322
:category: :subroutine
:arguments:
- job:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: complex
:intent: input/output
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: output
- ihi:
:type: integer
:intent: output
- lscale:
:type: real
:intent: output
:dims:
- n
- rscale:
:type: real
:intent: output
:dims:
- n
- work:
:type: real
:intent: workspace
:dims:
- "(lsame_(&job,\"S\")||lsame_(&job,\"B\")) ? MAX(1,6*n) : (lsame_(&job,\"N\")||lsame_(&job,\"P\")) ? 1 : 0"
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE, WORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CGGBAL balances a pair of general complex matrices (A,B). This\n\
* involves, first, permuting A and B by similarity transformations to\n\
* isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N\n\
* elements on the diagonal; and second, applying a diagonal similarity\n\
* transformation to rows and columns ILO to IHI to make the rows\n\
* and columns as close in norm as possible. Both steps are optional.\n\
*\n\
* Balancing may reduce the 1-norm of the matrices, and improve the\n\
* accuracy of the computed eigenvalues and/or eigenvectors in the\n\
* generalized eigenvalue problem A*x = lambda*B*x.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOB (input) CHARACTER*1\n\
* Specifies the operations to be performed on A and B:\n\
* = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0\n\
* and RSCALE(I) = 1.0 for i=1,...,N;\n\
* = 'P': permute only;\n\
* = 'S': scale only;\n\
* = 'B': both permute and scale.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the input matrix A.\n\
* On exit, A is overwritten by the balanced matrix.\n\
* If JOB = 'N', A is not referenced.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input/output) COMPLEX array, dimension (LDB,N)\n\
* On entry, the input matrix B.\n\
* On exit, B is overwritten by the balanced matrix.\n\
* If JOB = 'N', B is not referenced.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* ILO (output) INTEGER\n\
* IHI (output) INTEGER\n\
* ILO and IHI are set to integers such that on exit\n\
* A(i,j) = 0 and B(i,j) = 0 if i > j and\n\
* j = 1,...,ILO-1 or i = IHI+1,...,N.\n\
* If JOB = 'N' or 'S', ILO = 1 and IHI = N.\n\
*\n\
* LSCALE (output) REAL array, dimension (N)\n\
* Details of the permutations and scaling factors applied\n\
* to the left side of A and B. If P(j) is the index of the\n\
* row interchanged with row j, and D(j) is the scaling factor\n\
* applied to row j, then\n\
* LSCALE(j) = P(j) for J = 1,...,ILO-1\n\
* = D(j) for J = ILO,...,IHI\n\
* = P(j) for J = IHI+1,...,N.\n\
* The order in which the interchanges are made is N to IHI+1,\n\
* then 1 to ILO-1.\n\
*\n\
* RSCALE (output) REAL array, dimension (N)\n\
* Details of the permutations and scaling factors applied\n\
* to the right side of A and B. If P(j) is the index of the\n\
* column interchanged with column j, and D(j) is the scaling\n\
* factor applied to column j, then\n\
* RSCALE(j) = P(j) for J = 1,...,ILO-1\n\
* = D(j) for J = ILO,...,IHI\n\
* = P(j) for J = IHI+1,...,N.\n\
* The order in which the interchanges are made is N to IHI+1,\n\
* then 1 to ILO-1.\n\
*\n\
* WORK (workspace) REAL array, dimension (lwork)\n\
* lwork must be at least max(1,6*N) when JOB = 'S' or 'B', and\n\
* at least 1 when JOB = 'N' or 'P'.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* See R.C. WARD, Balancing the generalized eigenvalue problem,\n\
* SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.\n\
*\n\
* =====================================================================\n\
*\n"
|