1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
---
:name: cgghrd
:md5sum: 62029756327bc968ec07529087b0e19a
:category: :subroutine
:arguments:
- compq:
:type: char
:intent: input
- compz:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: input
- ihi:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- b:
:type: complex
:intent: input/output
:dims:
- ldb
- n
- ldb:
:type: integer
:intent: input
- q:
:type: complex
:intent: input/output
:dims:
- ldq
- n
- ldq:
:type: integer
:intent: input
- z:
:type: complex
:intent: input/output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CGGHRD reduces a pair of complex matrices (A,B) to generalized upper\n\
* Hessenberg form using unitary transformations, where A is a\n\
* general matrix and B is upper triangular. The form of the generalized\n\
* eigenvalue problem is\n\
* A*x = lambda*B*x,\n\
* and B is typically made upper triangular by computing its QR\n\
* factorization and moving the unitary matrix Q to the left side\n\
* of the equation.\n\
*\n\
* This subroutine simultaneously reduces A to a Hessenberg matrix H:\n\
* Q**H*A*Z = H\n\
* and transforms B to another upper triangular matrix T:\n\
* Q**H*B*Z = T\n\
* in order to reduce the problem to its standard form\n\
* H*y = lambda*T*y\n\
* where y = Z**H*x.\n\
*\n\
* The unitary matrices Q and Z are determined as products of Givens\n\
* rotations. They may either be formed explicitly, or they may be\n\
* postmultiplied into input matrices Q1 and Z1, so that\n\
* Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H\n\
* Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H\n\
* If Q1 is the unitary matrix from the QR factorization of B in the\n\
* original equation A*x = lambda*B*x, then CGGHRD reduces the original\n\
* problem to generalized Hessenberg form.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* COMPQ (input) CHARACTER*1\n\
* = 'N': do not compute Q;\n\
* = 'I': Q is initialized to the unit matrix, and the\n\
* unitary matrix Q is returned;\n\
* = 'V': Q must contain a unitary matrix Q1 on entry,\n\
* and the product Q1*Q is returned.\n\
*\n\
* COMPZ (input) CHARACTER*1\n\
* = 'N': do not compute Q;\n\
* = 'I': Q is initialized to the unit matrix, and the\n\
* unitary matrix Q is returned;\n\
* = 'V': Q must contain a unitary matrix Q1 on entry,\n\
* and the product Q1*Q is returned.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* ILO (input) INTEGER\n\
* IHI (input) INTEGER\n\
* ILO and IHI mark the rows and columns of A which are to be\n\
* reduced. It is assumed that A is already upper triangular\n\
* in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are\n\
* normally set by a previous call to CGGBAL; otherwise they\n\
* should be set to 1 and N respectively.\n\
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA, N)\n\
* On entry, the N-by-N general matrix to be reduced.\n\
* On exit, the upper triangle and the first subdiagonal of A\n\
* are overwritten with the upper Hessenberg matrix H, and the\n\
* rest is set to zero.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* B (input/output) COMPLEX array, dimension (LDB, N)\n\
* On entry, the N-by-N upper triangular matrix B.\n\
* On exit, the upper triangular matrix T = Q**H B Z. The\n\
* elements below the diagonal are set to zero.\n\
*\n\
* LDB (input) INTEGER\n\
* The leading dimension of the array B. LDB >= max(1,N).\n\
*\n\
* Q (input/output) COMPLEX array, dimension (LDQ, N)\n\
* On entry, if COMPQ = 'V', the unitary matrix Q1, typically\n\
* from the QR factorization of B.\n\
* On exit, if COMPQ='I', the unitary matrix Q, and if\n\
* COMPQ = 'V', the product Q1*Q.\n\
* Not referenced if COMPQ='N'.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q.\n\
* LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.\n\
*\n\
* Z (input/output) COMPLEX array, dimension (LDZ, N)\n\
* On entry, if COMPZ = 'V', the unitary matrix Z1.\n\
* On exit, if COMPZ='I', the unitary matrix Z, and if\n\
* COMPZ = 'V', the product Z1*Z.\n\
* Not referenced if COMPZ='N'.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z.\n\
* LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* This routine reduces A to Hessenberg and B to triangular form by\n\
* an unblocked reduction, as described in _Matrix_Computations_,\n\
* by Golub and van Loan (Johns Hopkins Press).\n\
*\n\
* =====================================================================\n\
*\n"
|