1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
---
:name: chbev
:md5sum: 1cdc22adcd288b6f426c659c21190424
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- kd:
:type: integer
:intent: input
- ab:
:type: complex
:intent: input/output
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- w:
:type: real
:intent: output
:dims:
- n
- z:
:type: complex
:intent: output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- work:
:type: complex
:intent: workspace
:dims:
- n
- rwork:
:type: real
:intent: workspace
:dims:
- MAX(1,3*n-2)
- info:
:type: integer
:intent: output
:substitutions:
ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
:fortran_help: " SUBROUTINE CHBEV( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CHBEV computes all the eigenvalues and, optionally, eigenvectors of\n\
* a complex Hermitian band matrix A.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* KD (input) INTEGER\n\
* The number of superdiagonals of the matrix A if UPLO = 'U',\n\
* or the number of subdiagonals if UPLO = 'L'. KD >= 0.\n\
*\n\
* AB (input/output) COMPLEX array, dimension (LDAB, N)\n\
* On entry, the upper or lower triangle of the Hermitian band\n\
* matrix A, stored in the first KD+1 rows of the array. The\n\
* j-th column of A is stored in the j-th column of the array AB\n\
* as follows:\n\
* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;\n\
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).\n\
*\n\
* On exit, AB is overwritten by values generated during the\n\
* reduction to tridiagonal form. If UPLO = 'U', the first\n\
* superdiagonal and the diagonal of the tridiagonal matrix T\n\
* are returned in rows KD and KD+1 of AB, and if UPLO = 'L',\n\
* the diagonal and first subdiagonal of T are returned in the\n\
* first two rows of AB.\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KD + 1.\n\
*\n\
* W (output) REAL array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* Z (output) COMPLEX array, dimension (LDZ, N)\n\
* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal\n\
* eigenvectors of the matrix A, with the i-th column of Z\n\
* holding the eigenvector associated with W(i).\n\
* If JOBZ = 'N', then Z is not referenced.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1, and if\n\
* JOBZ = 'V', LDZ >= max(1,N).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (N)\n\
*\n\
* RWORK (workspace) REAL array, dimension (max(1,3*N-2))\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit.\n\
* < 0: if INFO = -i, the i-th argument had an illegal value.\n\
* > 0: if INFO = i, the algorithm failed to converge; i\n\
* off-diagonal elements of an intermediate tridiagonal\n\
* form did not converge to zero.\n\
*\n\n\
* =====================================================================\n\
*\n"
|