1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
---
:name: cheev
:md5sum: 149dbe00ca97a680aa0d60555b346c6d
:category: :subroutine
:arguments:
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- w:
:type: real
:intent: output
:dims:
- n
- work:
:type: complex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: 2*n-1
- rwork:
:type: real
:intent: workspace
:dims:
- MAX(1, 3*n-2)
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CHEEV computes all eigenvalues and, optionally, eigenvectors of a\n\
* complex Hermitian matrix A.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA, N)\n\
* On entry, the Hermitian matrix A. If UPLO = 'U', the\n\
* leading N-by-N upper triangular part of A contains the\n\
* upper triangular part of the matrix A. If UPLO = 'L',\n\
* the leading N-by-N lower triangular part of A contains\n\
* the lower triangular part of the matrix A.\n\
* On exit, if JOBZ = 'V', then if INFO = 0, A contains the\n\
* orthonormal eigenvectors of the matrix A.\n\
* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')\n\
* or the upper triangle (if UPLO='U') of A, including the\n\
* diagonal, is destroyed.\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* W (output) REAL array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The length of the array WORK. LWORK >= max(1,2*N-1).\n\
* For optimal efficiency, LWORK >= (NB+1)*N,\n\
* where NB is the blocksize for CHETRD returned by ILAENV.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* RWORK (workspace) REAL array, dimension (max(1, 3*N-2))\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, the algorithm failed to converge; i\n\
* off-diagonal elements of an intermediate tridiagonal\n\
* form did not converge to zero.\n\
*\n\n\
* =====================================================================\n\
*\n"
|