File: chetd2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (143 lines) | stat: -rwxr-xr-x 4,979 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
--- 
:name: chetd2
:md5sum: 71b4642e8124d75edc818a52bbfcacc7
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- d: 
    :type: real
    :intent: output
    :dims: 
    - n
- e: 
    :type: real
    :intent: output
    :dims: 
    - n-1
- tau: 
    :type: complex
    :intent: output
    :dims: 
    - n-1
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CHETD2 reduces a complex Hermitian matrix A to real symmetric\n\
  *  tridiagonal form T by a unitary similarity transformation:\n\
  *  Q' * A * Q = T.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          Specifies whether the upper or lower triangular part of the\n\
  *          Hermitian matrix A is stored:\n\
  *          = 'U':  Upper triangular\n\
  *          = 'L':  Lower triangular\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading\n\
  *          n-by-n upper triangular part of A contains the upper\n\
  *          triangular part of the matrix A, and the strictly lower\n\
  *          triangular part of A is not referenced.  If UPLO = 'L', the\n\
  *          leading n-by-n lower triangular part of A contains the lower\n\
  *          triangular part of the matrix A, and the strictly upper\n\
  *          triangular part of A is not referenced.\n\
  *          On exit, if UPLO = 'U', the diagonal and first superdiagonal\n\
  *          of A are overwritten by the corresponding elements of the\n\
  *          tridiagonal matrix T, and the elements above the first\n\
  *          superdiagonal, with the array TAU, represent the unitary\n\
  *          matrix Q as a product of elementary reflectors; if UPLO\n\
  *          = 'L', the diagonal and first subdiagonal of A are over-\n\
  *          written by the corresponding elements of the tridiagonal\n\
  *          matrix T, and the elements below the first subdiagonal, with\n\
  *          the array TAU, represent the unitary matrix Q as a product\n\
  *          of elementary reflectors. See Further Details.\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  D       (output) REAL array, dimension (N)\n\
  *          The diagonal elements of the tridiagonal matrix T:\n\
  *          D(i) = A(i,i).\n\
  *\n\
  *  E       (output) REAL array, dimension (N-1)\n\
  *          The off-diagonal elements of the tridiagonal matrix T:\n\
  *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.\n\
  *\n\
  *  TAU     (output) COMPLEX array, dimension (N-1)\n\
  *          The scalar factors of the elementary reflectors (see Further\n\
  *          Details).\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0:  successful exit\n\
  *          < 0:  if INFO = -i, the i-th argument had an illegal value.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  If UPLO = 'U', the matrix Q is represented as a product of elementary\n\
  *  reflectors\n\
  *\n\
  *     Q = H(n-1) . . . H(2) H(1).\n\
  *\n\
  *  Each H(i) has the form\n\
  *\n\
  *     H(i) = I - tau * v * v'\n\
  *\n\
  *  where tau is a complex scalar, and v is a complex vector with\n\
  *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in\n\
  *  A(1:i-1,i+1), and tau in TAU(i).\n\
  *\n\
  *  If UPLO = 'L', the matrix Q is represented as a product of elementary\n\
  *  reflectors\n\
  *\n\
  *     Q = H(1) H(2) . . . H(n-1).\n\
  *\n\
  *  Each H(i) has the form\n\
  *\n\
  *     H(i) = I - tau * v * v'\n\
  *\n\
  *  where tau is a complex scalar, and v is a complex vector with\n\
  *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),\n\
  *  and tau in TAU(i).\n\
  *\n\
  *  The contents of A on exit are illustrated by the following examples\n\
  *  with n = 5:\n\
  *\n\
  *  if UPLO = 'U':                       if UPLO = 'L':\n\
  *\n\
  *    (  d   e   v2  v3  v4 )              (  d                  )\n\
  *    (      d   e   v3  v4 )              (  e   d              )\n\
  *    (          d   e   v4 )              (  v1  e   d          )\n\
  *    (              d   e  )              (  v1  v2  e   d      )\n\
  *    (                  d  )              (  v1  v2  v3  e   d  )\n\
  *\n\
  *  where d and e denote diagonal and off-diagonal elements of T, and vi\n\
  *  denotes an element of the vector defining H(i).\n\
  *\n\
  *  =====================================================================\n\
  *\n"