File: chetf2

package info (click to toggle)
ruby-lapack 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,552 kB
  • sloc: ansic: 191,612; ruby: 3,934; makefile: 8
file content (141 lines) | stat: -rwxr-xr-x 5,694 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
--- 
:name: chetf2
:md5sum: 05305896b5675db360a8faa279e8a94d
:category: :subroutine
:arguments: 
- uplo: 
    :type: char
    :intent: input
- n: 
    :type: integer
    :intent: input
- a: 
    :type: complex
    :intent: input/output
    :dims: 
    - lda
    - n
- lda: 
    :type: integer
    :intent: input
- ipiv: 
    :type: integer
    :intent: output
    :dims: 
    - n
- info: 
    :type: integer
    :intent: output
:substitutions: {}

:fortran_help: "      SUBROUTINE CHETF2( UPLO, N, A, LDA, IPIV, INFO )\n\n\
  *  Purpose\n\
  *  =======\n\
  *\n\
  *  CHETF2 computes the factorization of a complex Hermitian matrix A\n\
  *  using the Bunch-Kaufman diagonal pivoting method:\n\
  *\n\
  *     A = U*D*U'  or  A = L*D*L'\n\
  *\n\
  *  where U (or L) is a product of permutation and unit upper (lower)\n\
  *  triangular matrices, U' is the conjugate transpose of U, and D is\n\
  *  Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.\n\
  *\n\
  *  This is the unblocked version of the algorithm, calling Level 2 BLAS.\n\
  *\n\n\
  *  Arguments\n\
  *  =========\n\
  *\n\
  *  UPLO    (input) CHARACTER*1\n\
  *          Specifies whether the upper or lower triangular part of the\n\
  *          Hermitian matrix A is stored:\n\
  *          = 'U':  Upper triangular\n\
  *          = 'L':  Lower triangular\n\
  *\n\
  *  N       (input) INTEGER\n\
  *          The order of the matrix A.  N >= 0.\n\
  *\n\
  *  A       (input/output) COMPLEX array, dimension (LDA,N)\n\
  *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading\n\
  *          n-by-n upper triangular part of A contains the upper\n\
  *          triangular part of the matrix A, and the strictly lower\n\
  *          triangular part of A is not referenced.  If UPLO = 'L', the\n\
  *          leading n-by-n lower triangular part of A contains the lower\n\
  *          triangular part of the matrix A, and the strictly upper\n\
  *          triangular part of A is not referenced.\n\
  *\n\
  *          On exit, the block diagonal matrix D and the multipliers used\n\
  *          to obtain the factor U or L (see below for further details).\n\
  *\n\
  *  LDA     (input) INTEGER\n\
  *          The leading dimension of the array A.  LDA >= max(1,N).\n\
  *\n\
  *  IPIV    (output) INTEGER array, dimension (N)\n\
  *          Details of the interchanges and the block structure of D.\n\
  *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were\n\
  *          interchanged and D(k,k) is a 1-by-1 diagonal block.\n\
  *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and\n\
  *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)\n\
  *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =\n\
  *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were\n\
  *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.\n\
  *\n\
  *  INFO    (output) INTEGER\n\
  *          = 0: successful exit\n\
  *          < 0: if INFO = -k, the k-th argument had an illegal value\n\
  *          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization\n\
  *               has been completed, but the block diagonal matrix D is\n\
  *               exactly singular, and division by zero will occur if it\n\
  *               is used to solve a system of equations.\n\
  *\n\n\
  *  Further Details\n\
  *  ===============\n\
  *\n\
  *  09-29-06 - patch from\n\
  *    Bobby Cheng, MathWorks\n\
  *\n\
  *    Replace l.210 and l.392\n\
  *         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN\n\
  *    by\n\
  *         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN\n\
  *\n\
  *  01-01-96 - Based on modifications by\n\
  *    J. Lewis, Boeing Computer Services Company\n\
  *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n\
  *\n\
  *  If UPLO = 'U', then A = U*D*U', where\n\
  *     U = P(n)*U(n)* ... *P(k)U(k)* ...,\n\
  *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to\n\
  *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
  *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as\n\
  *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such\n\
  *  that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
  *\n\
  *             (   I    v    0   )   k-s\n\
  *     U(k) =  (   0    I    0   )   s\n\
  *             (   0    0    I   )   n-k\n\
  *                k-s   s   n-k\n\
  *\n\
  *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).\n\
  *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),\n\
  *  and A(k,k), and v overwrites A(1:k-2,k-1:k).\n\
  *\n\
  *  If UPLO = 'L', then A = L*D*L', where\n\
  *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,\n\
  *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to\n\
  *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
  *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as\n\
  *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such\n\
  *  that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
  *\n\
  *             (   I    0     0   )  k-1\n\
  *     L(k) =  (   0    I     0   )  s\n\
  *             (   0    v     I   )  n-k-s+1\n\
  *                k-1   s  n-k-s+1\n\
  *\n\
  *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).\n\
  *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),\n\
  *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).\n\
  *\n\
  *  =====================================================================\n\
  *\n"