1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
---
:name: chetf2
:md5sum: 05305896b5675db360a8faa279e8a94d
:category: :subroutine
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input/output
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- ipiv:
:type: integer
:intent: output
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CHETF2( UPLO, N, A, LDA, IPIV, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CHETF2 computes the factorization of a complex Hermitian matrix A\n\
* using the Bunch-Kaufman diagonal pivoting method:\n\
*\n\
* A = U*D*U' or A = L*D*L'\n\
*\n\
* where U (or L) is a product of permutation and unit upper (lower)\n\
* triangular matrices, U' is the conjugate transpose of U, and D is\n\
* Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.\n\
*\n\
* This is the unblocked version of the algorithm, calling Level 2 BLAS.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* Specifies whether the upper or lower triangular part of the\n\
* Hermitian matrix A is stored:\n\
* = 'U': Upper triangular\n\
* = 'L': Lower triangular\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix A. N >= 0.\n\
*\n\
* A (input/output) COMPLEX array, dimension (LDA,N)\n\
* On entry, the Hermitian matrix A. If UPLO = 'U', the leading\n\
* n-by-n upper triangular part of A contains the upper\n\
* triangular part of the matrix A, and the strictly lower\n\
* triangular part of A is not referenced. If UPLO = 'L', the\n\
* leading n-by-n lower triangular part of A contains the lower\n\
* triangular part of the matrix A, and the strictly upper\n\
* triangular part of A is not referenced.\n\
*\n\
* On exit, the block diagonal matrix D and the multipliers used\n\
* to obtain the factor U or L (see below for further details).\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* IPIV (output) INTEGER array, dimension (N)\n\
* Details of the interchanges and the block structure of D.\n\
* If IPIV(k) > 0, then rows and columns k and IPIV(k) were\n\
* interchanged and D(k,k) is a 1-by-1 diagonal block.\n\
* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and\n\
* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)\n\
* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =\n\
* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were\n\
* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -k, the k-th argument had an illegal value\n\
* > 0: if INFO = k, D(k,k) is exactly zero. The factorization\n\
* has been completed, but the block diagonal matrix D is\n\
* exactly singular, and division by zero will occur if it\n\
* is used to solve a system of equations.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* 09-29-06 - patch from\n\
* Bobby Cheng, MathWorks\n\
*\n\
* Replace l.210 and l.392\n\
* IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN\n\
* by\n\
* IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN\n\
*\n\
* 01-01-96 - Based on modifications by\n\
* J. Lewis, Boeing Computer Services Company\n\
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA\n\
*\n\
* If UPLO = 'U', then A = U*D*U', where\n\
* U = P(n)*U(n)* ... *P(k)U(k)* ...,\n\
* i.e., U is a product of terms P(k)*U(k), where k decreases from n to\n\
* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as\n\
* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such\n\
* that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
*\n\
* ( I v 0 ) k-s\n\
* U(k) = ( 0 I 0 ) s\n\
* ( 0 0 I ) n-k\n\
* k-s s n-k\n\
*\n\
* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).\n\
* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),\n\
* and A(k,k), and v overwrites A(1:k-2,k-1:k).\n\
*\n\
* If UPLO = 'L', then A = L*D*L', where\n\
* L = P(1)*L(1)* ... *P(k)*L(k)* ...,\n\
* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to\n\
* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1\n\
* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as\n\
* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such\n\
* that if the diagonal block D(k) is of order s (s = 1 or 2), then\n\
*\n\
* ( I 0 0 ) k-1\n\
* L(k) = ( 0 I 0 ) s\n\
* ( 0 v I ) n-k-s+1\n\
* k-1 s n-k-s+1\n\
*\n\
* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).\n\
* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),\n\
* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).\n\
*\n\
* =====================================================================\n\
*\n"
|