1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
---
:name: chgeqz
:md5sum: 8994134138840bb33bb79c034bde7992
:category: :subroutine
:arguments:
- job:
:type: char
:intent: input
- compq:
:type: char
:intent: input
- compz:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ilo:
:type: integer
:intent: input
- ihi:
:type: integer
:intent: input
- h:
:type: complex
:intent: input/output
:dims:
- ldh
- n
- ldh:
:type: integer
:intent: input
- t:
:type: complex
:intent: input/output
:dims:
- ldt
- n
- ldt:
:type: integer
:intent: input
- alpha:
:type: complex
:intent: output
:dims:
- n
- beta:
:type: complex
:intent: output
:dims:
- n
- q:
:type: complex
:intent: input/output
:dims:
- ldq
- n
- ldq:
:type: integer
:intent: input
- z:
:type: complex
:intent: input/output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- work:
:type: complex
:intent: output
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: n
- rwork:
:type: real
:intent: workspace
:dims:
- n
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CHGEQZ computes the eigenvalues of a complex matrix pair (H,T),\n\
* where H is an upper Hessenberg matrix and T is upper triangular,\n\
* using the single-shift QZ method.\n\
* Matrix pairs of this type are produced by the reduction to\n\
* generalized upper Hessenberg form of a complex matrix pair (A,B):\n\
* \n\
* A = Q1*H*Z1**H, B = Q1*T*Z1**H,\n\
* \n\
* as computed by CGGHRD.\n\
* \n\
* If JOB='S', then the Hessenberg-triangular pair (H,T) is\n\
* also reduced to generalized Schur form,\n\
* \n\
* H = Q*S*Z**H, T = Q*P*Z**H,\n\
* \n\
* where Q and Z are unitary matrices and S and P are upper triangular.\n\
* \n\
* Optionally, the unitary matrix Q from the generalized Schur\n\
* factorization may be postmultiplied into an input matrix Q1, and the\n\
* unitary matrix Z may be postmultiplied into an input matrix Z1.\n\
* If Q1 and Z1 are the unitary matrices from CGGHRD that reduced\n\
* the matrix pair (A,B) to generalized Hessenberg form, then the output\n\
* matrices Q1*Q and Z1*Z are the unitary factors from the generalized\n\
* Schur factorization of (A,B):\n\
* \n\
* A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H.\n\
* \n\
* To avoid overflow, eigenvalues of the matrix pair (H,T)\n\
* (equivalently, of (A,B)) are computed as a pair of complex values\n\
* (alpha,beta). If beta is nonzero, lambda = alpha / beta is an\n\
* eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)\n\
* A*x = lambda*B*x\n\
* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the\n\
* alternate form of the GNEP\n\
* mu*A*y = B*y.\n\
* The values of alpha and beta for the i-th eigenvalue can be read\n\
* directly from the generalized Schur form: alpha = S(i,i),\n\
* beta = P(i,i).\n\
*\n\
* Ref: C.B. Moler & G.W. Stewart, \"An Algorithm for Generalized Matrix\n\
* Eigenvalue Problems\", SIAM J. Numer. Anal., 10(1973),\n\
* pp. 241--256.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* JOB (input) CHARACTER*1\n\
* = 'E': Compute eigenvalues only;\n\
* = 'S': Computer eigenvalues and the Schur form.\n\
*\n\
* COMPQ (input) CHARACTER*1\n\
* = 'N': Left Schur vectors (Q) are not computed;\n\
* = 'I': Q is initialized to the unit matrix and the matrix Q\n\
* of left Schur vectors of (H,T) is returned;\n\
* = 'V': Q must contain a unitary matrix Q1 on entry and\n\
* the product Q1*Q is returned.\n\
*\n\
* COMPZ (input) CHARACTER*1\n\
* = 'N': Right Schur vectors (Z) are not computed;\n\
* = 'I': Q is initialized to the unit matrix and the matrix Z\n\
* of right Schur vectors of (H,T) is returned;\n\
* = 'V': Z must contain a unitary matrix Z1 on entry and\n\
* the product Z1*Z is returned.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices H, T, Q, and Z. N >= 0.\n\
*\n\
* ILO (input) INTEGER\n\
* IHI (input) INTEGER\n\
* ILO and IHI mark the rows and columns of H which are in\n\
* Hessenberg form. It is assumed that A is already upper\n\
* triangular in rows and columns 1:ILO-1 and IHI+1:N.\n\
* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.\n\
*\n\
* H (input/output) COMPLEX array, dimension (LDH, N)\n\
* On entry, the N-by-N upper Hessenberg matrix H.\n\
* On exit, if JOB = 'S', H contains the upper triangular\n\
* matrix S from the generalized Schur factorization.\n\
* If JOB = 'E', the diagonal of H matches that of S, but\n\
* the rest of H is unspecified.\n\
*\n\
* LDH (input) INTEGER\n\
* The leading dimension of the array H. LDH >= max( 1, N ).\n\
*\n\
* T (input/output) COMPLEX array, dimension (LDT, N)\n\
* On entry, the N-by-N upper triangular matrix T.\n\
* On exit, if JOB = 'S', T contains the upper triangular\n\
* matrix P from the generalized Schur factorization.\n\
* If JOB = 'E', the diagonal of T matches that of P, but\n\
* the rest of T is unspecified.\n\
*\n\
* LDT (input) INTEGER\n\
* The leading dimension of the array T. LDT >= max( 1, N ).\n\
*\n\
* ALPHA (output) COMPLEX array, dimension (N)\n\
* The complex scalars alpha that define the eigenvalues of\n\
* GNEP. ALPHA(i) = S(i,i) in the generalized Schur\n\
* factorization.\n\
*\n\
* BETA (output) COMPLEX array, dimension (N)\n\
* The real non-negative scalars beta that define the\n\
* eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized\n\
* Schur factorization.\n\
*\n\
* Together, the quantities alpha = ALPHA(j) and beta = BETA(j)\n\
* represent the j-th eigenvalue of the matrix pair (A,B), in\n\
* one of the forms lambda = alpha/beta or mu = beta/alpha.\n\
* Since either lambda or mu may overflow, they should not,\n\
* in general, be computed.\n\
*\n\
* Q (input/output) COMPLEX array, dimension (LDQ, N)\n\
* On entry, if COMPZ = 'V', the unitary matrix Q1 used in the\n\
* reduction of (A,B) to generalized Hessenberg form.\n\
* On exit, if COMPZ = 'I', the unitary matrix of left Schur\n\
* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of\n\
* left Schur vectors of (A,B).\n\
* Not referenced if COMPZ = 'N'.\n\
*\n\
* LDQ (input) INTEGER\n\
* The leading dimension of the array Q. LDQ >= 1.\n\
* If COMPQ='V' or 'I', then LDQ >= N.\n\
*\n\
* Z (input/output) COMPLEX array, dimension (LDZ, N)\n\
* On entry, if COMPZ = 'V', the unitary matrix Z1 used in the\n\
* reduction of (A,B) to generalized Hessenberg form.\n\
* On exit, if COMPZ = 'I', the unitary matrix of right Schur\n\
* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of\n\
* right Schur vectors of (A,B).\n\
* Not referenced if COMPZ = 'N'.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1.\n\
* If COMPZ='V' or 'I', then LDZ >= N.\n\
*\n\
* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of the array WORK. LWORK >= max(1,N).\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the optimal size of the WORK array, returns\n\
* this value as the first entry of the WORK array, and no error\n\
* message related to LWORK is issued by XERBLA.\n\
*\n\
* RWORK (workspace) REAL array, dimension (N)\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* = 1,...,N: the QZ iteration did not converge. (H,T) is not\n\
* in Schur form, but ALPHA(i) and BETA(i),\n\
* i=INFO+1,...,N should be correct.\n\
* = N+1,...,2*N: the shift calculation failed. (H,T) is not\n\
* in Schur form, but ALPHA(i) and BETA(i),\n\
* i=INFO-N+1,...,N should be correct.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* We assume that complex ABS works as long as its value is less than\n\
* overflow.\n\
*\n\
* =====================================================================\n\
*\n"
|