1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
---
:name: chpgvd
:md5sum: 64f7065ad380a8ee00723d15be61d9d1
:category: :subroutine
:arguments:
- itype:
:type: integer
:intent: input
- jobz:
:type: char
:intent: input
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- ap:
:type: complex
:intent: input/output
:dims:
- ldap
- bp:
:type: complex
:intent: input/output
:dims:
- n*(n+1)/2
- w:
:type: real
:intent: output
:dims:
- n
- z:
:type: complex
:intent: output
:dims:
- ldz
- n
- ldz:
:type: integer
:intent: input
- work:
:type: complex
:intent: workspace
:dims:
- MAX(1,lwork)
- lwork:
:type: integer
:intent: input
:option: true
:default: "n<=1 ? 1 : lsame_(&jobz,\"N\") ? n : lsame_(&jobz,\"V\") ? 2*n : 0"
- rwork:
:type: real
:intent: workspace
:dims:
- MAX(1,lrwork)
- lrwork:
:type: integer
:intent: input
:option: true
:default: "n<=1 ? 1 : lsame_(&jobz,\"N\") ? n : lsame_(&jobz,\"V\") ? 1+5*n+2*n*n : 0"
- iwork:
:type: integer
:intent: output
:dims:
- MAX(1,liwork)
- liwork:
:type: integer
:intent: input
:option: true
:default: "(lsame_(&jobz,\"N\")||n<=1) ? 1 : lsame_(&jobz,\"V\") ? 3+5*n : 0"
- info:
:type: integer
:intent: output
:substitutions:
ldz: "lsame_(&jobz,\"V\") ? MAX(1,n) : 1"
n: ((int)sqrtf(ldap*8+1.0f)-1)/2
:fortran_help: " SUBROUTINE CHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CHPGVD computes all the eigenvalues and, optionally, the eigenvectors\n\
* of a complex generalized Hermitian-definite eigenproblem, of the form\n\
* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and\n\
* B are assumed to be Hermitian, stored in packed format, and B is also\n\
* positive definite.\n\
* If eigenvectors are desired, it uses a divide and conquer algorithm.\n\
*\n\
* The divide and conquer algorithm makes very mild assumptions about\n\
* floating point arithmetic. It will work on machines with a guard\n\
* digit in add/subtract, or on those binary machines without guard\n\
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or\n\
* Cray-2. It could conceivably fail on hexadecimal or decimal machines\n\
* without guard digits, but we know of none.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* ITYPE (input) INTEGER\n\
* Specifies the problem type to be solved:\n\
* = 1: A*x = (lambda)*B*x\n\
* = 2: A*B*x = (lambda)*x\n\
* = 3: B*A*x = (lambda)*x\n\
*\n\
* JOBZ (input) CHARACTER*1\n\
* = 'N': Compute eigenvalues only;\n\
* = 'V': Compute eigenvalues and eigenvectors.\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangles of A and B are stored;\n\
* = 'L': Lower triangles of A and B are stored.\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrices A and B. N >= 0.\n\
*\n\
* AP (input/output) COMPLEX array, dimension (N*(N+1)/2)\n\
* On entry, the upper or lower triangle of the Hermitian matrix\n\
* A, packed columnwise in a linear array. The j-th column of A\n\
* is stored in the array AP as follows:\n\
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.\n\
*\n\
* On exit, the contents of AP are destroyed.\n\
*\n\
* BP (input/output) COMPLEX array, dimension (N*(N+1)/2)\n\
* On entry, the upper or lower triangle of the Hermitian matrix\n\
* B, packed columnwise in a linear array. The j-th column of B\n\
* is stored in the array BP as follows:\n\
* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;\n\
* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.\n\
*\n\
* On exit, the triangular factor U or L from the Cholesky\n\
* factorization B = U**H*U or B = L*L**H, in the same storage\n\
* format as B.\n\
*\n\
* W (output) REAL array, dimension (N)\n\
* If INFO = 0, the eigenvalues in ascending order.\n\
*\n\
* Z (output) COMPLEX array, dimension (LDZ, N)\n\
* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of\n\
* eigenvectors. The eigenvectors are normalized as follows:\n\
* if ITYPE = 1 or 2, Z**H*B*Z = I;\n\
* if ITYPE = 3, Z**H*inv(B)*Z = I.\n\
* If JOBZ = 'N', then Z is not referenced.\n\
*\n\
* LDZ (input) INTEGER\n\
* The leading dimension of the array Z. LDZ >= 1, and if\n\
* JOBZ = 'V', LDZ >= max(1,N).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (MAX(1,LWORK))\n\
* On exit, if INFO = 0, WORK(1) returns the required LWORK.\n\
*\n\
* LWORK (input) INTEGER\n\
* The dimension of array WORK.\n\
* If N <= 1, LWORK >= 1.\n\
* If JOBZ = 'N' and N > 1, LWORK >= N.\n\
* If JOBZ = 'V' and N > 1, LWORK >= 2*N.\n\
*\n\
* If LWORK = -1, then a workspace query is assumed; the routine\n\
* only calculates the required sizes of the WORK, RWORK and\n\
* IWORK arrays, returns these values as the first entries of\n\
* the WORK, RWORK and IWORK arrays, and no error message\n\
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
*\n\
* RWORK (workspace) REAL array, dimension (MAX(1,LRWORK))\n\
* On exit, if INFO = 0, RWORK(1) returns the required LRWORK.\n\
*\n\
* LRWORK (input) INTEGER\n\
* The dimension of array RWORK.\n\
* If N <= 1, LRWORK >= 1.\n\
* If JOBZ = 'N' and N > 1, LRWORK >= N.\n\
* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.\n\
*\n\
* If LRWORK = -1, then a workspace query is assumed; the\n\
* routine only calculates the required sizes of the WORK, RWORK\n\
* and IWORK arrays, returns these values as the first entries\n\
* of the WORK, RWORK and IWORK arrays, and no error message\n\
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
*\n\
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))\n\
* On exit, if INFO = 0, IWORK(1) returns the required LIWORK.\n\
*\n\
* LIWORK (input) INTEGER\n\
* The dimension of array IWORK.\n\
* If JOBZ = 'N' or N <= 1, LIWORK >= 1.\n\
* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.\n\
*\n\
* If LIWORK = -1, then a workspace query is assumed; the\n\
* routine only calculates the required sizes of the WORK, RWORK\n\
* and IWORK arrays, returns these values as the first entries\n\
* of the WORK, RWORK and IWORK arrays, and no error message\n\
* related to LWORK or LRWORK or LIWORK is issued by XERBLA.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: CPPTRF or CHPEVD returned an error code:\n\
* <= N: if INFO = i, CHPEVD failed to converge;\n\
* i off-diagonal elements of an intermediate\n\
* tridiagonal form did not convergeto zero;\n\
* > N: if INFO = N + i, for 1 <= i <= n, then the leading\n\
* minor of order i of B is not positive definite.\n\
* The factorization of B could not be completed and\n\
* no eigenvalues or eigenvectors were computed.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Based on contributions by\n\
* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA\n\
*\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL LQUERY, UPPER, WANTZ\n CHARACTER TRANS\n INTEGER J, LIWMIN, LRWMIN, LWMIN, NEIG\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL CHPEVD, CHPGST, CPPTRF, CTPMV, CTPSV, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC MAX, REAL\n\
* ..\n"
|