1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
---
:name: chsein
:md5sum: 47f76f0ff879b1035b2920625919b141
:category: :subroutine
:arguments:
- side:
:type: char
:intent: input
- eigsrc:
:type: char
:intent: input
- initv:
:type: char
:intent: input
- select:
:type: logical
:intent: input
:dims:
- n
- n:
:type: integer
:intent: input
- h:
:type: complex
:intent: input
:dims:
- ldh
- n
- ldh:
:type: integer
:intent: input
- w:
:type: complex
:intent: input/output
:dims:
- n
- vl:
:type: complex
:intent: input/output
:dims:
- ldvl
- mm
- ldvl:
:type: integer
:intent: input
- vr:
:type: complex
:intent: input/output
:dims:
- ldvr
- mm
- ldvr:
:type: integer
:intent: input
- mm:
:type: integer
:intent: input
- m:
:type: integer
:intent: output
- work:
:type: complex
:intent: workspace
:dims:
- n*n
- rwork:
:type: real
:intent: workspace
:dims:
- n
- ifaill:
:type: integer
:intent: output
:dims:
- mm
- ifailr:
:type: integer
:intent: output
:dims:
- mm
- info:
:type: integer
:intent: output
:substitutions: {}
:fortran_help: " SUBROUTINE CHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CHSEIN uses inverse iteration to find specified right and/or left\n\
* eigenvectors of a complex upper Hessenberg matrix H.\n\
*\n\
* The right eigenvector x and the left eigenvector y of the matrix H\n\
* corresponding to an eigenvalue w are defined by:\n\
*\n\
* H * x = w * x, y**h * H = w * y**h\n\
*\n\
* where y**h denotes the conjugate transpose of the vector y.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* SIDE (input) CHARACTER*1\n\
* = 'R': compute right eigenvectors only;\n\
* = 'L': compute left eigenvectors only;\n\
* = 'B': compute both right and left eigenvectors.\n\
*\n\
* EIGSRC (input) CHARACTER*1\n\
* Specifies the source of eigenvalues supplied in W:\n\
* = 'Q': the eigenvalues were found using CHSEQR; thus, if\n\
* H has zero subdiagonal elements, and so is\n\
* block-triangular, then the j-th eigenvalue can be\n\
* assumed to be an eigenvalue of the block containing\n\
* the j-th row/column. This property allows CHSEIN to\n\
* perform inverse iteration on just one diagonal block.\n\
* = 'N': no assumptions are made on the correspondence\n\
* between eigenvalues and diagonal blocks. In this\n\
* case, CHSEIN must always perform inverse iteration\n\
* using the whole matrix H.\n\
*\n\
* INITV (input) CHARACTER*1\n\
* = 'N': no initial vectors are supplied;\n\
* = 'U': user-supplied initial vectors are stored in the arrays\n\
* VL and/or VR.\n\
*\n\
* SELECT (input) LOGICAL array, dimension (N)\n\
* Specifies the eigenvectors to be computed. To select the\n\
* eigenvector corresponding to the eigenvalue W(j),\n\
* SELECT(j) must be set to .TRUE..\n\
*\n\
* N (input) INTEGER\n\
* The order of the matrix H. N >= 0.\n\
*\n\
* H (input) COMPLEX array, dimension (LDH,N)\n\
* The upper Hessenberg matrix H.\n\
*\n\
* LDH (input) INTEGER\n\
* The leading dimension of the array H. LDH >= max(1,N).\n\
*\n\
* W (input/output) COMPLEX array, dimension (N)\n\
* On entry, the eigenvalues of H.\n\
* On exit, the real parts of W may have been altered since\n\
* close eigenvalues are perturbed slightly in searching for\n\
* independent eigenvectors.\n\
*\n\
* VL (input/output) COMPLEX array, dimension (LDVL,MM)\n\
* On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must\n\
* contain starting vectors for the inverse iteration for the\n\
* left eigenvectors; the starting vector for each eigenvector\n\
* must be in the same column in which the eigenvector will be\n\
* stored.\n\
* On exit, if SIDE = 'L' or 'B', the left eigenvectors\n\
* specified by SELECT will be stored consecutively in the\n\
* columns of VL, in the same order as their eigenvalues.\n\
* If SIDE = 'R', VL is not referenced.\n\
*\n\
* LDVL (input) INTEGER\n\
* The leading dimension of the array VL.\n\
* LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.\n\
*\n\
* VR (input/output) COMPLEX array, dimension (LDVR,MM)\n\
* On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must\n\
* contain starting vectors for the inverse iteration for the\n\
* right eigenvectors; the starting vector for each eigenvector\n\
* must be in the same column in which the eigenvector will be\n\
* stored.\n\
* On exit, if SIDE = 'R' or 'B', the right eigenvectors\n\
* specified by SELECT will be stored consecutively in the\n\
* columns of VR, in the same order as their eigenvalues.\n\
* If SIDE = 'L', VR is not referenced.\n\
*\n\
* LDVR (input) INTEGER\n\
* The leading dimension of the array VR.\n\
* LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.\n\
*\n\
* MM (input) INTEGER\n\
* The number of columns in the arrays VL and/or VR. MM >= M.\n\
*\n\
* M (output) INTEGER\n\
* The number of columns in the arrays VL and/or VR required to\n\
* store the eigenvectors (= the number of .TRUE. elements in\n\
* SELECT).\n\
*\n\
* WORK (workspace) COMPLEX array, dimension (N*N)\n\
*\n\
* RWORK (workspace) REAL array, dimension (N)\n\
*\n\
* IFAILL (output) INTEGER array, dimension (MM)\n\
* If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left\n\
* eigenvector in the i-th column of VL (corresponding to the\n\
* eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the\n\
* eigenvector converged satisfactorily.\n\
* If SIDE = 'R', IFAILL is not referenced.\n\
*\n\
* IFAILR (output) INTEGER array, dimension (MM)\n\
* If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right\n\
* eigenvector in the i-th column of VR (corresponding to the\n\
* eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the\n\
* eigenvector converged satisfactorily.\n\
* If SIDE = 'L', IFAILR is not referenced.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: successful exit\n\
* < 0: if INFO = -i, the i-th argument had an illegal value\n\
* > 0: if INFO = i, i is the number of eigenvectors which\n\
* failed to converge; see IFAILL and IFAILR for further\n\
* details.\n\
*\n\n\
* Further Details\n\
* ===============\n\
*\n\
* Each eigenvector is normalized so that the element of largest\n\
* magnitude has magnitude 1; here the magnitude of a complex number\n\
* (x,y) is taken to be |x|+|y|.\n\
*\n\
* =====================================================================\n\
*\n"
|