1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
---
:name: cla_gbrcond_c
:md5sum: 67b30cebe554e4047e0ef184e9efd72e
:category: :function
:type: real
:arguments:
- trans:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- kl:
:type: integer
:intent: input
- ku:
:type: integer
:intent: input
- ab:
:type: complex
:intent: input
:dims:
- ldab
- n
- ldab:
:type: integer
:intent: input
- afb:
:type: complex
:intent: input
:dims:
- ldafb
- n
- ldafb:
:type: integer
:intent: input
- ipiv:
:type: integer
:intent: input
:dims:
- n
- c:
:type: real
:intent: input
:dims:
- n
- capply:
:type: logical
:intent: input
- info:
:type: integer
:intent: output
- work:
:type: complex
:intent: input
:dims:
- 2*n
- rwork:
:type: real
:intent: input
:dims:
- n
:substitutions: {}
:fortran_help: " REAL FUNCTION CLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB, LDAFB, IPIV, C, CAPPLY, INFO, WORK, RWORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLA_GBRCOND_C Computes the infinity norm condition number of\n\
* op(A) * inv(diag(C)) where C is a REAL vector.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* TRANS (input) CHARACTER*1\n\
* Specifies the form of the system of equations:\n\
* = 'N': A * X = B (No transpose)\n\
* = 'T': A**T * X = B (Transpose)\n\
* = 'C': A**H * X = B (Conjugate Transpose = Transpose)\n\
*\n\
* N (input) INTEGER\n\
* The number of linear equations, i.e., the order of the\n\
* matrix A. N >= 0.\n\
*\n\
* KL (input) INTEGER\n\
* The number of subdiagonals within the band of A. KL >= 0.\n\
*\n\
* KU (input) INTEGER\n\
* The number of superdiagonals within the band of A. KU >= 0.\n\
*\n\
* AB (input) COMPLEX array, dimension (LDAB,N)\n\
* On entry, the matrix A in band storage, in rows 1 to KL+KU+1.\n\
* The j-th column of A is stored in the j-th column of the\n\
* array AB as follows:\n\
* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)\n\
*\n\
* LDAB (input) INTEGER\n\
* The leading dimension of the array AB. LDAB >= KL+KU+1.\n\
*\n\
* AFB (input) COMPLEX array, dimension (LDAFB,N)\n\
* Details of the LU factorization of the band matrix A, as\n\
* computed by CGBTRF. U is stored as an upper triangular\n\
* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,\n\
* and the multipliers used during the factorization are stored\n\
* in rows KL+KU+2 to 2*KL+KU+1.\n\
*\n\
* LDAFB (input) INTEGER\n\
* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.\n\
*\n\
* IPIV (input) INTEGER array, dimension (N)\n\
* The pivot indices from the factorization A = P*L*U\n\
* as computed by CGBTRF; row i of the matrix was interchanged\n\
* with row IPIV(i).\n\
*\n\
* C (input) REAL array, dimension (N)\n\
* The vector C in the formula op(A) * inv(diag(C)).\n\
*\n\
* CAPPLY (input) LOGICAL\n\
* If .TRUE. then access the vector C in the formula above.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: Successful exit.\n\
* i > 0: The ith argument is invalid.\n\
*\n\
* WORK (input) COMPLEX array, dimension (2*N).\n\
* Workspace.\n\
*\n\
* RWORK (input) REAL array, dimension (N).\n\
* Workspace.\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n LOGICAL NOTRANS\n INTEGER KASE, I, J\n REAL AINVNM, ANORM, TMP\n COMPLEX ZDUM\n\
* ..\n\
* .. Local Arrays ..\n INTEGER ISAVE( 3 )\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL CLACN2, CGBTRS, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC ABS, MAX\n\
* ..\n\
* .. Statement Functions ..\n REAL CABS1\n\
* ..\n\
* .. Statement Function Definitions ..\n CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n\
* ..\n"
|