1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
---
:name: cla_hercond_c
:md5sum: a663416c99cd3cb30e966cfb58383a71
:category: :function
:type: real
:arguments:
- uplo:
:type: char
:intent: input
- n:
:type: integer
:intent: input
- a:
:type: complex
:intent: input
:dims:
- lda
- n
- lda:
:type: integer
:intent: input
- af:
:type: complex
:intent: input
:dims:
- ldaf
- n
- ldaf:
:type: integer
:intent: input
- ipiv:
:type: integer
:intent: input
:dims:
- n
- c:
:type: real
:intent: input
:dims:
- n
- capply:
:type: logical
:intent: input
- info:
:type: integer
:intent: output
- work:
:type: complex
:intent: input
:dims:
- 2*n
- rwork:
:type: real
:intent: input
:dims:
- n
:substitutions: {}
:fortran_help: " REAL FUNCTION CLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK )\n\n\
* Purpose\n\
* =======\n\
*\n\
* CLA_HERCOND_C computes the infinity norm condition number of\n\
* op(A) * inv(diag(C)) where C is a REAL vector.\n\
*\n\n\
* Arguments\n\
* =========\n\
*\n\
* UPLO (input) CHARACTER*1\n\
* = 'U': Upper triangle of A is stored;\n\
* = 'L': Lower triangle of A is stored.\n\
*\n\
* N (input) INTEGER\n\
* The number of linear equations, i.e., the order of the\n\
* matrix A. N >= 0.\n\
*\n\
* A (input) COMPLEX array, dimension (LDA,N)\n\
* On entry, the N-by-N matrix A\n\
*\n\
* LDA (input) INTEGER\n\
* The leading dimension of the array A. LDA >= max(1,N).\n\
*\n\
* AF (input) COMPLEX array, dimension (LDAF,N)\n\
* The block diagonal matrix D and the multipliers used to\n\
* obtain the factor U or L as computed by CHETRF.\n\
*\n\
* LDAF (input) INTEGER\n\
* The leading dimension of the array AF. LDAF >= max(1,N).\n\
*\n\
* IPIV (input) INTEGER array, dimension (N)\n\
* Details of the interchanges and the block structure of D\n\
* as determined by CHETRF.\n\
*\n\
* C (input) REAL array, dimension (N)\n\
* The vector C in the formula op(A) * inv(diag(C)).\n\
*\n\
* CAPPLY (input) LOGICAL\n\
* If .TRUE. then access the vector C in the formula above.\n\
*\n\
* INFO (output) INTEGER\n\
* = 0: Successful exit.\n\
* i > 0: The ith argument is invalid.\n\
*\n\
* WORK (input) COMPLEX array, dimension (2*N).\n\
* Workspace.\n\
*\n\
* RWORK (input) REAL array, dimension (N).\n\
* Workspace.\n\
*\n\n\
* =====================================================================\n\
*\n\
* .. Local Scalars ..\n INTEGER KASE, I, J\n REAL AINVNM, ANORM, TMP\n LOGICAL UP\n COMPLEX ZDUM\n\
* ..\n\
* .. Local Arrays ..\n INTEGER ISAVE( 3 )\n\
* ..\n\
* .. External Functions ..\n LOGICAL LSAME\n EXTERNAL LSAME\n\
* ..\n\
* .. External Subroutines ..\n EXTERNAL CLACN2, CHETRS, XERBLA\n\
* ..\n\
* .. Intrinsic Functions ..\n INTRINSIC ABS, MAX\n\
* ..\n\
* .. Statement Functions ..\n REAL CABS1\n\
* ..\n\
* .. Statement Function Definitions ..\n CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )\n\
* ..\n"
|